找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

import java.io.*;
public class Anagram {

public static void main(String[] args) {
      java.util.Scanner sc=new java.util.Scanner(System.in);
            PrintWriter p=new PrintWriter(System.out,true);
            p.println("Enter Word");
            String a[],s="",st;boolean flag=true;
            int in[],n,nf=1,i,j=0,k,m=0;
            char l[];
            st=sc.next();
            p.println("Anagrams");
            p.println("1 . "+st);
            l=st.toCharArray();
            n=st.length();
            for(i=1;i<=n;i++){
                nf*=i;
            }

            i=1;
            a=new String[nf];
            in=new int[n];
            a[0]=st;
            while(i<nf){
                for(m=0;m<n;m++){
                    in[m]=n;
                }j=0;
                while(j<n){
                    k=(int)(n*Math.random());

                    for(m=0;m<=j;m++){
                        if(k==in[m]){
                            flag=false;
                            break;          
                        }
                    }
                    if(flag==true){
                        in[j++]=k;
                    }flag=true;
                }s="";
                for(j=0;j<n;j++){
                    s+=l[in[j]];
                }

                //Removing same words
                for(m=0;m<=i;m++){
                        if(s.equalsIgnoreCase(a[m])){
                            flag=false;
                            break;          
                        }
                    }
                    if(flag==true){
                        a[i++]=s;
                        p.println(i+" . "+a[i-1]);
                    }flag=true;

            }

    }
}

其他回答

使用递归。

依次尝试每个字母作为第一个字母,然后使用递归调用找到剩余字母的所有排列。 基本情况是,当输入是空字符串时,唯一的排列就是空字符串。

这对我很有效。

import java.util.Arrays;

public class StringPermutations{
    public static void main(String args[]) {
        String inputString = "ABC";
        permute(inputString.toCharArray(), 0, inputString.length()-1);
    }

    public static void permute(char[] ary, int startIndex, int endIndex) {
        if(startIndex == endIndex){
            System.out.println(String.valueOf(ary));
        }else{
            for(int i=startIndex;i<=endIndex;i++) {
                 swap(ary, startIndex, i );
                 permute(ary, startIndex+1, endIndex);
                 swap(ary, startIndex, i );
            }
        }
    }

    public static void swap(char[] ary, int x, int y) {
        char temp = ary[x];
        ary[x] = ary[y];
        ary[y] = temp;
    }
}

下面是两个c#版本(仅供参考): 1. 打印所有排列 2. 返回所有排列

算法的基本要点是(可能下面的代码更直观-尽管如此,下面的代码是做什么的一些解释): -从当前索引到集合的其余部分,交换当前索引处的元素 -递归地获得下一个索引中剩余元素的排列 -恢复秩序,通过重新交换

注意:上述递归函数将从起始索引中调用。

private void PrintAllPermutations(int[] a, int index, ref int count)
        {
            if (index == (a.Length - 1))
            {
                count++;
                var s = string.Format("{0}: {1}", count, string.Join(",", a));
                Debug.WriteLine(s);
            }
            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                this.PrintAllPermutations(a, index + 1, ref count);
                Utilities.swap(ref a[i], ref a[index]);
            }
        }
        private int PrintAllPermutations(int[] a)
        {
            a.ThrowIfNull("a");
            int count = 0;
            this.PrintAllPermutations(a, index:0, count: ref count);
            return count;
        }

版本2(与上面相同-但返回排列而不是打印)

private int[][] GetAllPermutations(int[] a, int index)
        {
            List<int[]> permutations = new List<int[]>();
            if (index == (a.Length - 1))
            {
                permutations.Add(a.ToArray());
            }

            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                var r = this.GetAllPermutations(a, index + 1);
                permutations.AddRange(r);
                Utilities.swap(ref a[i], ref a[index]);
            }
            return permutations.ToArray();
        }
        private int[][] GetAllPermutations(int[] p)
        {
            p.ThrowIfNull("p");
            return this.GetAllPermutations(p, 0);
        }

单元测试

[TestMethod]
        public void PermutationsTests()
        {
            List<int> input = new List<int>();
            int[] output = { 0, 1, 2, 6, 24, 120 };
            for (int i = 0; i <= 5; i++)
            {
                if (i != 0)
                {
                    input.Add(i);
                }
                Debug.WriteLine("================PrintAllPermutations===================");
                int count = this.PrintAllPermutations(input.ToArray());
                Assert.IsTrue(count == output[i]);
                Debug.WriteLine("=====================GetAllPermutations=================");
                var r = this.GetAllPermutations(input.ToArray());
                Assert.IsTrue(count == r.Length);
                for (int j = 1; j <= r.Length;j++ )
                {
                    string s = string.Format("{0}: {1}", j,
                        string.Join(",", r[j - 1]));
                    Debug.WriteLine(s);
                }
                Debug.WriteLine("No.OfElements: {0}, TotalPerms: {1}", i, count);
            }
        }

所有之前的贡献者都很好地解释和提供了代码。我想我也应该分享这个方法,因为它可能也会帮助到别人。解决方案基于(堆算法)

一些事情:

注意excel中最后一项的描述只是为了帮助你更好地可视化逻辑。因此,最后一列的实际值将是2,1,0(如果我们要运行代码,因为我们处理的是数组,而数组以0开头)。 交换算法基于当前位置的偶数或奇数值发生。如果你看一下swap方法被调用的位置,你就会明白这一点。你可以看到发生了什么。

事情是这样的:

public static void main(String[] args) {

        String ourword = "abc";
        String[] ourArray = ourword.split("");
        permute(ourArray, ourArray.length);

    }

    private static void swap(String[] ourarray, int right, int left) {
        String temp = ourarray[right];
        ourarray[right] = ourarray[left];
        ourarray[left] = temp;
    }

    public static void permute(String[] ourArray, int currentPosition) {
        if (currentPosition == 1) {
            System.out.println(Arrays.toString(ourArray));
        } else {
            for (int i = 0; i < currentPosition; i++) {
                // subtract one from the last position (here is where you are
                // selecting the the next last item 
                permute(ourArray, currentPosition - 1);

                // if it's odd position
                if (currentPosition % 2 == 1) {
                    swap(ourArray, 0, currentPosition - 1);
                } else {
                    swap(ourArray, i, currentPosition - 1);
                }
            }
        }
    }
public static void permutation(String str) { 
    permutation("", str); 
}

private static void permutation(String prefix, String str) {
    int n = str.length();
    if (n == 0) System.out.println(prefix);
    else {
        for (int i = 0; i < n; i++)
            permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
    }
}

(通过Java编程入门)