找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

import java.io.*;
public class Anagram {

public static void main(String[] args) {
      java.util.Scanner sc=new java.util.Scanner(System.in);
            PrintWriter p=new PrintWriter(System.out,true);
            p.println("Enter Word");
            String a[],s="",st;boolean flag=true;
            int in[],n,nf=1,i,j=0,k,m=0;
            char l[];
            st=sc.next();
            p.println("Anagrams");
            p.println("1 . "+st);
            l=st.toCharArray();
            n=st.length();
            for(i=1;i<=n;i++){
                nf*=i;
            }

            i=1;
            a=new String[nf];
            in=new int[n];
            a[0]=st;
            while(i<nf){
                for(m=0;m<n;m++){
                    in[m]=n;
                }j=0;
                while(j<n){
                    k=(int)(n*Math.random());

                    for(m=0;m<=j;m++){
                        if(k==in[m]){
                            flag=false;
                            break;          
                        }
                    }
                    if(flag==true){
                        in[j++]=k;
                    }flag=true;
                }s="";
                for(j=0;j<n;j++){
                    s+=l[in[j]];
                }

                //Removing same words
                for(m=0;m<=i;m++){
                        if(s.equalsIgnoreCase(a[m])){
                            flag=false;
                            break;          
                        }
                    }
                    if(flag==true){
                        a[i++]=s;
                        p.println(i+" . "+a[i-1]);
                    }flag=true;

            }

    }
}

其他回答

我一直在学习递归思考,第一个打动我的自然解决方案如下。一个更简单的问题是找到一个短一个字母的字符串的排列。我将假设,并相信我的每一根纤维,我的函数可以正确地找到一个字符串的排列,比我目前正在尝试的字符串短一个字母。

Given a string say 'abc', break it into a subproblem of finding permutations of a string one character less which is 'bc'. Once we have permutations of 'bc' we need to know how to combine it with 'a' to get the permutations for 'abc'. This is the core of recursion. Use the solution of a subproblem to solve the current problem. By observation, we can see that inserting 'a' in all the positions of each of the permutations of 'bc' which are 'bc' and 'cb' will give us all the permutations of 'abc'. We have to insert 'a' between adjacent letters and at the front and end of each permutation. For example

我们有bc

“a”+“bc”=“abc”

“b”+“a”+“c”=“bac”

“b”+“a”=“b”

对于'cb'我们有

a + b = acb

“c”+“a”+“b”=“cab”

“cb”+“a”=“cb”

下面的代码片段将说明这一点。下面是该代码片段的工作链接。

def main():
    result = []
    for permutation in ['bc', 'cb']:
        for i in range(len(permutation) + 1):
            result.append(permutation[:i] + 'a' + permutation[i:])
    return result


if __name__ == '__main__':
    print(main())

完整的递归解将是。下面是完整代码的工作链接。

def permutations(s):
    if len(s) == 1 or len(s) == 0:
        return s
    _permutations = []
    for permutation in permutations(s[1:]):
        for i in range(len(permutation) + 1):
            _permutations.append(permutation[:i] + s[0] + permutation[i:])
    return _permutations


def main(s):
    print(permutations(s))


if __name__ == '__main__':
    main('abc')
import java.io.*;
public class Anagram {

public static void main(String[] args) {
      java.util.Scanner sc=new java.util.Scanner(System.in);
            PrintWriter p=new PrintWriter(System.out,true);
            p.println("Enter Word");
            String a[],s="",st;boolean flag=true;
            int in[],n,nf=1,i,j=0,k,m=0;
            char l[];
            st=sc.next();
            p.println("Anagrams");
            p.println("1 . "+st);
            l=st.toCharArray();
            n=st.length();
            for(i=1;i<=n;i++){
                nf*=i;
            }

            i=1;
            a=new String[nf];
            in=new int[n];
            a[0]=st;
            while(i<nf){
                for(m=0;m<n;m++){
                    in[m]=n;
                }j=0;
                while(j<n){
                    k=(int)(n*Math.random());

                    for(m=0;m<=j;m++){
                        if(k==in[m]){
                            flag=false;
                            break;          
                        }
                    }
                    if(flag==true){
                        in[j++]=k;
                    }flag=true;
                }s="";
                for(j=0;j<n;j++){
                    s+=l[in[j]];
                }

                //Removing same words
                for(m=0;m<=i;m++){
                        if(s.equalsIgnoreCase(a[m])){
                            flag=false;
                            break;          
                        }
                    }
                    if(flag==true){
                        a[i++]=s;
                        p.println(i+" . "+a[i-1]);
                    }flag=true;

            }

    }
}

基于Mark Byers的回答,我想出了这个解决方案:

JAVA

public class Main {

    public static void main(String[] args) {
        myPerm("ABCD", 0);
    }

    private static void myPerm(String str, int index)
    {
        if (index == str.length()) System.out.println(str);

        for (int i = index; i < str.length(); i++)
        {
            char prefix = str.charAt(i);
            String suffix = str.substring(0,i) + str.substring(i+1);

            myPerm(prefix + suffix, index + 1);
        }
    }
}

C#

我还使用新的c# 8.0范围操作符在c#中编写了该函数

    class Program
    {
        static void Main(string[] args)
        {
            myPerm("ABCD", 0);
        }

        private static void myPerm(string str, int index)
        {
            if (index == str.Length) Console.WriteLine(str);

            for (int i = index; i < str.Length; i++)
            {
                char prefix = str[i];
                string suffix = str[0..i] + str[(i + 1)..];

                myPerm(prefix + suffix, index + 1);
            }
        }
    

我们只是把每个字母放在开头,然后排列。 第一次迭代是这样的:

/*
myPerm("ABCD",0)  
  prefix = "A"  
  suffix = "BCD"  
  myPerm("ABCD",1)  
    prefix = "B"  
    suffix = "ACD"  
    myPerm("BACD",2)  
      prefix = "C"  
      suffix = "BAD"  
      myPerm("CBAD",3)  
        prefix = "D"  
        suffix = "CBA"  
        myPerm("DCBA",4)  
          Console.WriteLine("DCBA")
*/

这个没有递归

public static void permute(String s) {
    if(null==s || s.isEmpty()) {
        return;
    }

    // List containing words formed in each iteration 
    List<String> strings = new LinkedList<String>();
    strings.add(String.valueOf(s.charAt(0))); // add the first element to the list

     // Temp list that holds the set of strings for 
     //  appending the current character to all position in each word in the original list
    List<String> tempList = new LinkedList<String>(); 

    for(int i=1; i< s.length(); i++) {

        for(int j=0; j<strings.size(); j++) {
            tempList.addAll(merge(s.charAt(i), strings.get(j)));
                        }
        strings.removeAll(strings);
        strings.addAll(tempList);

        tempList.removeAll(tempList);

    }

    for(int i=0; i<strings.size(); i++) {
        System.out.println(strings.get(i));
    }
}

/**
 * helper method that appends the given character at each position in the given string 
 * and returns a set of such modified strings 
 * - set removes duplicates if any(in case a character is repeated)
 */
private static Set<String> merge(Character c,  String s) {
    if(s==null || s.isEmpty()) {
        return null;
    }

    int len = s.length();
    StringBuilder sb = new StringBuilder();
    Set<String> list = new HashSet<String>();

    for(int i=0; i<= len; i++) {
        sb = new StringBuilder();
        sb.append(s.substring(0, i) + c + s.substring(i, len));
        list.add(sb.toString());
    }

    return list;
}
/*
     * eg: abc =>{a,bc},{b,ac},{c,ab}
     * =>{ca,b},{cb,a}
     * =>cba,cab
     * =>{ba,c},{bc,a}
     * =>bca,bac
     * =>{ab,c},{ac,b}
     * =>acb,abc
     */
    public void nonRecpermute(String prefix, String word)
    {
        String[] currentstr ={prefix,word};
        Stack<String[]> stack = new Stack<String[]>();
        stack.add(currentstr);
        while(!stack.isEmpty())
        {
            currentstr = stack.pop();
            String currentPrefix = currentstr[0];
            String currentWord = currentstr[1];
            if(currentWord.equals(""))
            {
                System.out.println("Word ="+currentPrefix);
            }
            for(int i=0;i<currentWord.length();i++)
            {
                String[] newstr = new String[2];
                newstr[0]=currentPrefix + String.valueOf(currentWord.charAt(i));
                newstr[1] = currentWord.substring(0, i);
                if(i<currentWord.length()-1)
                {
                    newstr[1] = newstr[1]+currentWord.substring(i+1);
                }
                stack.push(newstr);
            }

        }

    }