找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

使用递归的简单python解决方案。

def get_permutations(string):

    # base case
    if len(string) <= 1:
        return set([string])

    all_chars_except_last = string[:-1]
    last_char = string[-1]

    # recursive call: get all possible permutations for all chars except last
    permutations_of_all_chars_except_last = get_permutations(all_chars_except_last)

    # put the last char in all possible positions for each of the above permutations
    permutations = set()
    for permutation_of_all_chars_except_last in permutations_of_all_chars_except_last:
        for position in range(len(all_chars_except_last) + 1):
            permutation = permutation_of_all_chars_except_last[:position] + last_char + permutation_of_all_chars_except_last[position:]
            permutations.add(permutation)

    return permutations

其他回答

如果有人想要生成排列来做一些事情,而不是通过void方法打印它们:

static List<int[]> permutations(int n) {

    class Perm {
        private final List<int[]> permutations = new ArrayList<>();

        private void perm(int[] array, int step) {
            if (step == 1) permutations.add(array.clone());
            else for (int i = 0; i < step; i++) {
                perm(array, step - 1);
                int j = (step % 2 == 0) ? i : 0;
                swap(array, step - 1, j);
            }
        }

        private void swap(int[] array, int i, int j) {
            int buffer = array[i];
            array[i] = array[j];
            array[j] = buffer;
        }

    }

    int[] nVector  = new int[n];
    for (int i = 0; i < n; i++) nVector [i] = i;

    Perm perm = new Perm();
    perm.perm(nVector, n);
    return perm.permutations;

}
/** Returns an array list containing all
 * permutations of the characters in s. */
public static ArrayList<String> permute(String s) {
    ArrayList<String> perms = new ArrayList<>();
    int slen = s.length();
    if (slen > 0) {
        // Add the first character from s to the perms array list.
        perms.add(Character.toString(s.charAt(0)));

        // Repeat for all additional characters in s.
        for (int i = 1;  i < slen;  ++i) {

            // Get the next character from s.
            char c = s.charAt(i);

            // For each of the strings currently in perms do the following:
            int size = perms.size();
            for (int j = 0;  j < size;  ++j) {

                // 1. remove the string
                String p = perms.remove(0);
                int plen = p.length();

                // 2. Add plen + 1 new strings to perms.  Each new string
                //    consists of the removed string with the character c
                //    inserted into it at a unique location.
                for (int k = 0;  k <= plen;  ++k) {
                    perms.add(p.substring(0, k) + c + p.substring(k));
                }
            }
        }
    }
    return perms;
}

使用Es6的字符串排列

使用reduce()方法

Const排列= STR => { If (str.length <= 2) 返回str.length === 2 ?[str, str[1] + str[0]]: [str]; 返回str .split (") .reduce ( (acc, letter, index) => acc.concat(排列(str。Slice (0, index) + str.slice(index + 1))。Map (val =>字母+ val)), [] ); }; console.log(排列(STR));

使用递归。

依次尝试每个字母作为第一个字母,然后使用递归调用找到剩余字母的所有排列。 基本情况是,当输入是空字符串时,唯一的排列就是空字符串。

下面是两个c#版本(仅供参考): 1. 打印所有排列 2. 返回所有排列

算法的基本要点是(可能下面的代码更直观-尽管如此,下面的代码是做什么的一些解释): -从当前索引到集合的其余部分,交换当前索引处的元素 -递归地获得下一个索引中剩余元素的排列 -恢复秩序,通过重新交换

注意:上述递归函数将从起始索引中调用。

private void PrintAllPermutations(int[] a, int index, ref int count)
        {
            if (index == (a.Length - 1))
            {
                count++;
                var s = string.Format("{0}: {1}", count, string.Join(",", a));
                Debug.WriteLine(s);
            }
            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                this.PrintAllPermutations(a, index + 1, ref count);
                Utilities.swap(ref a[i], ref a[index]);
            }
        }
        private int PrintAllPermutations(int[] a)
        {
            a.ThrowIfNull("a");
            int count = 0;
            this.PrintAllPermutations(a, index:0, count: ref count);
            return count;
        }

版本2(与上面相同-但返回排列而不是打印)

private int[][] GetAllPermutations(int[] a, int index)
        {
            List<int[]> permutations = new List<int[]>();
            if (index == (a.Length - 1))
            {
                permutations.Add(a.ToArray());
            }

            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                var r = this.GetAllPermutations(a, index + 1);
                permutations.AddRange(r);
                Utilities.swap(ref a[i], ref a[index]);
            }
            return permutations.ToArray();
        }
        private int[][] GetAllPermutations(int[] p)
        {
            p.ThrowIfNull("p");
            return this.GetAllPermutations(p, 0);
        }

单元测试

[TestMethod]
        public void PermutationsTests()
        {
            List<int> input = new List<int>();
            int[] output = { 0, 1, 2, 6, 24, 120 };
            for (int i = 0; i <= 5; i++)
            {
                if (i != 0)
                {
                    input.Add(i);
                }
                Debug.WriteLine("================PrintAllPermutations===================");
                int count = this.PrintAllPermutations(input.ToArray());
                Assert.IsTrue(count == output[i]);
                Debug.WriteLine("=====================GetAllPermutations=================");
                var r = this.GetAllPermutations(input.ToArray());
                Assert.IsTrue(count == r.Length);
                for (int j = 1; j <= r.Length;j++ )
                {
                    string s = string.Format("{0}: {1}", j,
                        string.Join(",", r[j - 1]));
                    Debug.WriteLine(s);
                }
                Debug.WriteLine("No.OfElements: {0}, TotalPerms: {1}", i, count);
            }
        }