找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

如果有人想要生成排列来做一些事情,而不是通过void方法打印它们:

static List<int[]> permutations(int n) {

    class Perm {
        private final List<int[]> permutations = new ArrayList<>();

        private void perm(int[] array, int step) {
            if (step == 1) permutations.add(array.clone());
            else for (int i = 0; i < step; i++) {
                perm(array, step - 1);
                int j = (step % 2 == 0) ? i : 0;
                swap(array, step - 1, j);
            }
        }

        private void swap(int[] array, int i, int j) {
            int buffer = array[i];
            array[i] = array[j];
            array[j] = buffer;
        }

    }

    int[] nVector  = new int[n];
    for (int i = 0; i < n; i++) nVector [i] = i;

    Perm perm = new Perm();
    perm.perm(nVector, n);
    return perm.permutations;

}

其他回答

我们可以用阶乘来计算有多少字符串以某个字母开头。

示例:取输入abcd。(3!) == 6个字符串将以abcd中的每个字母开头。

static public int facts(int x){
    int sum = 1;
    for (int i = 1; i < x; i++) {
        sum *= (i+1);
    }
    return sum;
}

public static void permutation(String str) {
    char[] str2 = str.toCharArray();
    int n = str2.length;
    int permutation = 0;
    if (n == 1) {
        System.out.println(str2[0]);
    } else if (n == 2) {
        System.out.println(str2[0] + "" + str2[1]);
        System.out.println(str2[1] + "" + str2[0]);
    } else {
        for (int i = 0; i < n; i++) {
            if (true) {
                char[] str3 = str.toCharArray();
                char temp = str3[i];
                str3[i] = str3[0];
                str3[0] = temp;
                str2 = str3;
            }

            for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
                if (j != n-1) {
                    char temp1 = str2[j+1];
                    str2[j+1] = str2[j];
                    str2[j] = temp1;
                } else {
                    char temp1 = str2[n-1];
                    str2[n-1] = str2[1];
                    str2[1] = temp1;
                    j = 1;
                } // end of else block
                permutation++;
                System.out.print("permutation " + permutation + " is   -> ");
                for (int k = 0; k < n; k++) {
                    System.out.print(str2[k]);
                } // end of loop k
                System.out.println();
            } // end of loop j
        } // end of loop i
    }
}

让我试着用Kotlin来解决这个问题:

fun <T> List<T>.permutations(): List<List<T>> {
    //escape case
    if (this.isEmpty()) return emptyList()

    if (this.size == 1) return listOf(this)

    if (this.size == 2) return listOf(listOf(this.first(), this.last()), listOf(this.last(), this.first()))

    //recursive case
    return this.flatMap { lastItem ->
        this.minus(lastItem).permutations().map { it.plus(lastItem) }
    }
}

核心概念:将长链表分解成小链表+递归

长答案与示例列表[1,2,3,4]:

即使是一个4种组合的列表,在脑海中列出所有可能的排列已经有点令人困惑了,我们需要做的就是避免这种情况。我们很容易理解如何对大小为0、1和2的列表进行排列,因此我们所需要做的就是将它们分解为这些大小中的任何一个,并将它们正确地组合起来。想象一台头奖机器:这个算法将从右向左旋转,然后写下

当列表大小为0或1时,返回空/列表为1 当列表大小为2时处理(例如[3,4]),并生成2个排列([3,4]& [4,3]) 对于每一项,将其标记为最后一项中的最后一项,并找到列表中其余项目的所有排列。(例如,把[4]放在桌子上,把[1,2,3]重新排列) 现在对它的子元素进行所有的排列,把它自己放回列表的末尾(例如:[1,2,3][,4],[1,3,2][,4],[2,3,1][,4],…)

改进的代码相同

    static String permutationStr[];
    static int indexStr = 0;

    static int factorial (int i) {
        if (i == 1)
            return 1;
        else
            return i * factorial(i-1);
    }

    public static void permutation(String str) {
        char strArr[] = str.toLowerCase().toCharArray();
        java.util.Arrays.sort(strArr);

        int count = 1, dr = 1;
        for (int i = 0; i < strArr.length-1; i++){
            if ( strArr[i] == strArr[i+1]) {
                count++;
            } else {
                dr *= factorial(count);
                count = 1;
            }       
        }
        dr *= factorial(count);

        count = factorial(strArr.length) / dr;

        permutationStr = new String[count];

        permutation("", str);

        for (String oneStr : permutationStr){
            System.out.println(oneStr);
        }
    }

    private static void permutation(String prefix, String str) {
        int n = str.length();
        if (n == 0) {
            for (int i = 0; i < indexStr; i++){
                if(permutationStr[i].equals(prefix))
                    return;
            }        
            permutationStr[indexStr++] = prefix;
        } else {
            for (int i = 0; i < n; i++) {
                permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i + 1, n));
            }
        }
    }

使用递归的简单python解决方案。

def get_permutations(string):

    # base case
    if len(string) <= 1:
        return set([string])

    all_chars_except_last = string[:-1]
    last_char = string[-1]

    # recursive call: get all possible permutations for all chars except last
    permutations_of_all_chars_except_last = get_permutations(all_chars_except_last)

    # put the last char in all possible positions for each of the above permutations
    permutations = set()
    for permutation_of_all_chars_except_last in permutations_of_all_chars_except_last:
        for position in range(len(all_chars_except_last) + 1):
            permutation = permutation_of_all_chars_except_last[:position] + last_char + permutation_of_all_chars_except_last[position:]
            permutations.add(permutation)

    return permutations

下面是一个java实现:

/* All Permutations of a String */

import java.util.*;
import java.lang.*;
import java.io.*;

/* Complexity O(n*n!) */
class Ideone
{
     public static ArrayList<String> strPerm(String str, ArrayList<String> list)
     {
        int len = str.length();
        if(len==1){
            list.add(str);
            return list;
        }

        list = strPerm(str.substring(0,len-1),list);
        int ls = list.size();
        char ap = str.charAt(len-1);
        for(int i=0;i<ls;i++){
            String temp = list.get(i);
            int tl = temp.length();
            for(int j=0;j<=tl;j++){
                list.add(temp.substring(0,j)+ap+temp.substring(j,tl));  
            }
        }

        while(true){
            String temp = list.get(0);
            if(temp.length()<len)
                list.remove(temp);
            else
                break;
        }

        return list;
    }

    public static void main (String[] args) throws java.lang.Exception
    {
        String str = "abc";
        ArrayList<String> list = new ArrayList<>();

        list = strPerm(str,list);
        System.out.println("Total Permutations : "+list.size());
        for(int i=0;i<list.size();i++)
            System.out.println(list.get(i));

    }
}

http://ideone.com/nWPb3k