我正在努力寻找合适的函数,将返回指定数量的行随机拾取,没有从R语言的数据帧替换?有人能帮帮我吗?


当前回答

为了完整起见:

Dplyr还提供绘制样本的比例或分数

df %>% sample_frac(0.33)

这是非常方便的,例如,在机器学习中,当你必须做一个特定的分割比例,如80%:20%

其他回答

在R中从tibble类型中选择一个随机样本:

library("tibble")    
a <- your_tibble[sample(1:nrow(your_tibble), 150),]

Nrow接受一个tibble并返回行数。传递给sample的第一个参数是一个从1到tibble末尾的范围。传递给sample的第二个参数是150,表示需要多少随机抽样。方括号切片指定返回索引的行。变量“a”获取随机抽样的值。

我是R的新手,但我用的是这个简单的方法:

sample_of_diamonds <- diamonds[sample(nrow(diamonds),100),]

PS:如果它有一些我没有想到的缺点,请注意。

数据。表包提供了函数DT[sample(。N, M)],从数据表DT中随机抽取M行。

library(data.table)
set.seed(10)

mtcars <- data.table(mtcars)
mtcars[sample(.N, 6)]

    mpg cyl  disp  hp drat    wt  qsec vs am gear carb
1: 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
2: 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
3: 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
4: 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
5: 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
6: 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2

约翰·科尔比给出的答案是正确的。然而,如果你是一个dplyr用户,也有答案sample_n:

sample_n(df, 10)

从数据框架中随机抽取10行。它调用sample.int,因此实际上是相同的答案,但输入更少(并且简化了在magrittr上下文中的使用,因为dataframe是第一个参数)。

过时的答案。请使用dplyr::sample_frac()或dplyr::sample_n()代替。

在我的R包中有一个函数示例。仅用于此目的的行:

install.packages('kimisc')

library(kimisc)
example(sample.rows)

smpl..> set.seed(42)

smpl..> sample.rows(data.frame(a=c(1,2,3), b=c(4,5,6),
                               row.names=c('a', 'b', 'c')), 10, replace=TRUE)
    a b
c   3 6
c.1 3 6
a   1 4
c.2 3 6
b   2 5
b.1 2 5
c.3 3 6
a.1 1 4
b.2 2 5
c.4 3 6

根据Joris Meys对之前的回答的评论,通过使它成为通用的S3函数来增强sample是一个坏主意。