我正在努力寻找合适的函数,将返回指定数量的行随机拾取,没有从R语言的数据帧替换?有人能帮帮我吗?


当前回答

数据。表包提供了函数DT[sample(。N, M)],从数据表DT中随机抽取M行。

library(data.table)
set.seed(10)

mtcars <- data.table(mtcars)
mtcars[sample(.N, 6)]

    mpg cyl  disp  hp drat    wt  qsec vs am gear carb
1: 14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
2: 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
3: 17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
4: 21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
5: 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
6: 15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2

其他回答

在R中从tibble类型中选择一个随机样本:

library("tibble")    
a <- your_tibble[sample(1:nrow(your_tibble), 150),]

Nrow接受一个tibble并返回行数。传递给sample的第一个参数是一个从1到tibble末尾的范围。传递给sample的第二个参数是150,表示需要多少随机抽样。方括号切片指定返回索引的行。变量“a”获取随机抽样的值。

我是R的新手,但我用的是这个简单的方法:

sample_of_diamonds <- diamonds[sample(nrow(diamonds),100),]

PS:如果它有一些我没有想到的缺点,请注意。

首先制作一些数据:

> df = data.frame(matrix(rnorm(20), nrow=10))
> df
           X1         X2
1   0.7091409 -1.4061361
2  -1.1334614 -0.1973846
3   2.3343391 -0.4385071
4  -0.9040278 -0.6593677
5   0.4180331 -1.2592415
6   0.7572246 -0.5463655
7  -0.8996483  0.4231117
8  -1.0356774 -0.1640883
9  -0.3983045  0.7157506
10 -0.9060305  2.3234110

然后随机选择一些行:

> df[sample(nrow(df), 3), ]
           X1         X2
9  -0.3983045  0.7157506
2  -1.1334614 -0.1973846
10 -0.9060305  2.3234110

2021年在潮流宇宙中这样做的方式是:

library(tidyverse)

df = data.frame(
  A = letters[1:10],
  B = 1:10
)

df
#>    A  B
#> 1  a  1
#> 2  b  2
#> 3  c  3
#> 4  d  4
#> 5  e  5
#> 6  f  6
#> 7  g  7
#> 8  h  8
#> 9  i  9
#> 10 j 10

df %>% sample_n(5)
#>   A  B
#> 1 e  5
#> 2 g  7
#> 3 h  8
#> 4 b  2
#> 5 j 10

df %>% sample_frac(0.5)
#>   A  B
#> 1 i  9
#> 2 g  7
#> 3 j 10
#> 4 c  3
#> 5 b  2

由reprex包在2021-10-05创建(v2.0.0.9000)

写一个!从JC的回答可以看出:

randomRows = function(df,n){
   return(df[sample(nrow(df),n),])
}

现在,通过首先检查n是否<=nrow(df)并在出现错误时停止,使其更好。