我有一个很少列的熊猫数据帧。
现在我知道某些行是基于某个列值的异常值。
例如
列“Vol”的所有值都在12xx左右,其中一个值是4000(离群值)。
现在我想排除那些Vol列像这样的行。
所以,本质上,我需要在数据帧上放一个过滤器,这样我们就可以选择所有的行,其中某一列的值距离平均值在3个标准差之内。
实现这一点的优雅方式是什么?
我有一个很少列的熊猫数据帧。
现在我知道某些行是基于某个列值的异常值。
例如
列“Vol”的所有值都在12xx左右,其中一个值是4000(离群值)。
现在我想排除那些Vol列像这样的行。
所以,本质上,我需要在数据帧上放一个过滤器,这样我们就可以选择所有的行,其中某一列的值距离平均值在3个标准差之内。
实现这一点的优雅方式是什么?
当前回答
#------------------------------------------------------------------------------
# accept a dataframe, remove outliers, return cleaned data in a new dataframe
# see http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
#------------------------------------------------------------------------------
def remove_outlier(df_in, col_name):
q1 = df_in[col_name].quantile(0.25)
q3 = df_in[col_name].quantile(0.75)
iqr = q3-q1 #Interquartile range
fence_low = q1-1.5*iqr
fence_high = q3+1.5*iqr
df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)]
return df_out
其他回答
去掉离群值的函数
def drop_outliers(df, field_name):
distance = 1.5 * (np.percentile(df[field_name], 75) - np.percentile(df[field_name], 25))
df.drop(df[df[field_name] > distance + np.percentile(df[field_name], 75)].index, inplace=True)
df.drop(df[df[field_name] < np.percentile(df[field_name], 25) - distance].index, inplace=True)
下面是一个包含数据和2组的完整示例:
进口:
from StringIO import StringIO
import pandas as pd
#pandas config
pd.set_option('display.max_rows', 20)
有2个组的数据示例:G1:Group 1。G2:第二组:
TESTDATA = StringIO("""G1;G2;Value
1;A;1.6
1;A;5.1
1;A;7.1
1;A;8.1
1;B;21.1
1;B;22.1
1;B;24.1
1;B;30.6
2;A;40.6
2;A;51.1
2;A;52.1
2;A;60.6
2;B;80.1
2;B;70.6
2;B;90.6
2;B;85.1
""")
读取文本数据到pandas数据框架:
df = pd.read_csv(TESTDATA, sep=";")
使用标准偏差定义离群值
stds = 1.0
outliers = df[['G1', 'G2', 'Value']].groupby(['G1','G2']).transform(
lambda group: (group - group.mean()).abs().div(group.std())) > stds
定义过滤后的数据值和异常值:
dfv = df[outliers.Value == False]
dfo = df[outliers.Value == True]
打印结果:
print '\n'*5, 'All values with decimal 1 are non-outliers. In the other hand, all values with 6 in the decimal are.'
print '\nDef DATA:\n%s\n\nFiltred Values with %s stds:\n%s\n\nOutliers:\n%s' %(df, stds, dfv, dfo)
你可以使用布尔掩码:
import pandas as pd
def remove_outliers(df, q=0.05):
upper = df.quantile(1-q)
lower = df.quantile(q)
mask = (df < upper) & (df > lower)
return mask
t = pd.DataFrame({'train': [1,1,2,3,4,5,6,7,8,9,9],
'y': [1,0,0,1,1,0,0,1,1,1,0]})
mask = remove_outliers(t['train'], 0.1)
print(t[mask])
输出:
train y
2 2 0
3 3 1
4 4 1
5 5 0
6 6 0
7 7 1
8 8 1
如果你的数据帧有异常值,有很多方法可以处理这些异常值:
大多数都在我的文章中提到过:读一读
在这里找到代码:Notebook
由于我正处于我的数据科学之旅的早期阶段,我使用下面的代码来处理异常值。
#Outlier Treatment
def outlier_detect(df):
for i in df.describe().columns:
Q1=df.describe().at['25%',i]
Q3=df.describe().at['75%',i]
IQR=Q3 - Q1
LTV=Q1 - 1.5 * IQR
UTV=Q3 + 1.5 * IQR
x=np.array(df[i])
p=[]
for j in x:
if j < LTV or j>UTV:
p.append(df[i].median())
else:
p.append(j)
df[i]=p
return df