我有一个很少列的熊猫数据帧。

现在我知道某些行是基于某个列值的异常值。

例如

列“Vol”的所有值都在12xx左右,其中一个值是4000(离群值)。

现在我想排除那些Vol列像这样的行。

所以,本质上,我需要在数据帧上放一个过滤器,这样我们就可以选择所有的行,其中某一列的值距离平均值在3个标准差之内。

实现这一点的优雅方式是什么?


当前回答

#------------------------------------------------------------------------------
# accept a dataframe, remove outliers, return cleaned data in a new dataframe
# see http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
#------------------------------------------------------------------------------
def remove_outlier(df_in, col_name):
    q1 = df_in[col_name].quantile(0.25)
    q3 = df_in[col_name].quantile(0.75)
    iqr = q3-q1 #Interquartile range
    fence_low  = q1-1.5*iqr
    fence_high = q3+1.5*iqr
    df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)]
    return df_out

其他回答

删除至少一列中有异常值的所有行

如果你的数据框架中有多列,并且想要删除至少一列中有异常值的所有行,下面的表达式可以一次性完成:

import pandas as pd
import numpy as np
from scipy import stats


df = pd.DataFrame(np.random.randn(100, 3))

df[(np.abs(stats.zscore(df)) < 3).any(axis=1)]

描述:

中的每个列,它首先计算每个值的z分数 列,相对于列的均值和标准差。 然后取绝对z分数,因为方向没有 物质,只有当它低于阈值时。 All(轴=1)确保对于每一行,所有列都满足 约束。 最后,这个条件的结果被用于索引数据帧。

基于单个列筛选其他列

为zscore指定一列,例如df[0],并删除.all(axis=1)。

df[(np.abs(stats.zscore(df[0])) < 3)]

scipy。Stats有方法trim1()和trimboth(),根据排名和被删除值的引入百分比,在单行中删除异常值。

去掉离群值的函数

def drop_outliers(df, field_name):
    distance = 1.5 * (np.percentile(df[field_name], 75) - np.percentile(df[field_name], 25))
    df.drop(df[df[field_name] > distance + np.percentile(df[field_name], 75)].index, inplace=True)
    df.drop(df[df[field_name] < np.percentile(df[field_name], 25) - distance].index, inplace=True)

由于我正处于我的数据科学之旅的早期阶段,我使用下面的代码来处理异常值。

#Outlier Treatment

def outlier_detect(df):
    for i in df.describe().columns:
        Q1=df.describe().at['25%',i]
        Q3=df.describe().at['75%',i]
        IQR=Q3 - Q1
        LTV=Q1 - 1.5 * IQR
        UTV=Q3 + 1.5 * IQR
        x=np.array(df[i])
        p=[]
        for j in x:
            if j < LTV or j>UTV:
                p.append(df[i].median())
            else:
                p.append(j)
        df[i]=p
    return df

如果你喜欢方法链接,你可以得到所有数值列的布尔条件,如下所示:

df.sub(df.mean()).div(df.std()).abs().lt(3)

每一列的每个值都将根据其是否距离平均值小于三个标准差而转换为True/False。