我有一个很少列的熊猫数据帧。

现在我知道某些行是基于某个列值的异常值。

例如

列“Vol”的所有值都在12xx左右,其中一个值是4000(离群值)。

现在我想排除那些Vol列像这样的行。

所以,本质上,我需要在数据帧上放一个过滤器,这样我们就可以选择所有的行,其中某一列的值距离平均值在3个标准差之内。

实现这一点的优雅方式是什么?


当前回答

删除至少一列中有异常值的所有行

如果你的数据框架中有多列,并且想要删除至少一列中有异常值的所有行,下面的表达式可以一次性完成:

import pandas as pd
import numpy as np
from scipy import stats


df = pd.DataFrame(np.random.randn(100, 3))

df[(np.abs(stats.zscore(df)) < 3).any(axis=1)]

描述:

中的每个列,它首先计算每个值的z分数 列,相对于列的均值和标准差。 然后取绝对z分数,因为方向没有 物质,只有当它低于阈值时。 All(轴=1)确保对于每一行,所有列都满足 约束。 最后,这个条件的结果被用于索引数据帧。

基于单个列筛选其他列

为zscore指定一列,例如df[0],并删除.all(axis=1)。

df[(np.abs(stats.zscore(df[0])) < 3)]

其他回答

去掉离群值的函数

def drop_outliers(df, field_name):
    distance = 1.5 * (np.percentile(df[field_name], 75) - np.percentile(df[field_name], 25))
    df.drop(df[df[field_name] > distance + np.percentile(df[field_name], 75)].index, inplace=True)
    df.drop(df[df[field_name] < np.percentile(df[field_name], 25) - distance].index, inplace=True)

把98和2百分位作为离群值的极限

upper_limit = np.percentile(X_train.logerror.values, 98) 
lower_limit = np.percentile(X_train.logerror.values, 2) # Filter the outliers from the dataframe
data[‘target’].loc[X_train[‘target’]>upper_limit] = upper_limit data[‘target’].loc[X_train[‘target’]<lower_limit] = lower_limit

我喜欢夹而不喜欢掉。以下将夹在第2和98分频。

df_list = list(df)
minPercentile = 0.02
maxPercentile = 0.98

for _ in range(numCols):
    df[df_list[_]] = df[df_list[_]].clip((df[df_list[_]].quantile(minPercentile)),(df[df_list[_]].quantile(maxPercentile)))

由于我还没有看到处理数值和非数值属性的答案,这里有一个补充答案。

您可能只希望删除数值属性上的异常值(类别变量几乎不可能是异常值)。

函数定义

我扩展了@tanemaki的建议,当非数值属性也存在时处理数据:

from scipy import stats

def drop_numerical_outliers(df, z_thresh=3):
    # Constrains will contain `True` or `False` depending on if it is a value below the threshold.
    constrains = df.select_dtypes(include=[np.number]) \
        .apply(lambda x: np.abs(stats.zscore(x)) < z_thresh, reduce=False) \
        .all(axis=1)
    # Drop (inplace) values set to be rejected
    df.drop(df.index[~constrains], inplace=True)

使用

drop_numerical_outliers(df)

例子

想象一个数据集df,其中包含一些关于房屋的值:小巷、土地轮廓、销售价格……例:数据文档

首先,你想要在散点图上可视化数据(z-score Thresh=3):

# Plot data before dropping those greater than z-score 3. 
# The scatterAreaVsPrice function's definition has been removed for readability's sake.
scatterAreaVsPrice(df)

# Drop the outliers on every attributes
drop_numerical_outliers(train_df)

# Plot the result. All outliers were dropped. Note that the red points are not
# the same outliers from the first plot, but the new computed outliers based on the new data-frame.
scatterAreaVsPrice(train_df)

scipy。Stats有方法trim1()和trimboth(),根据排名和被删除值的引入百分比,在单行中删除异常值。