我有一个很少列的熊猫数据帧。
现在我知道某些行是基于某个列值的异常值。
例如
列“Vol”的所有值都在12xx左右,其中一个值是4000(离群值)。
现在我想排除那些Vol列像这样的行。
所以,本质上,我需要在数据帧上放一个过滤器,这样我们就可以选择所有的行,其中某一列的值距离平均值在3个标准差之内。
实现这一点的优雅方式是什么?
我有一个很少列的熊猫数据帧。
现在我知道某些行是基于某个列值的异常值。
例如
列“Vol”的所有值都在12xx左右,其中一个值是4000(离群值)。
现在我想排除那些Vol列像这样的行。
所以,本质上,我需要在数据帧上放一个过滤器,这样我们就可以选择所有的行,其中某一列的值距离平均值在3个标准差之内。
实现这一点的优雅方式是什么?
当前回答
你可以使用布尔掩码:
import pandas as pd
def remove_outliers(df, q=0.05):
upper = df.quantile(1-q)
lower = df.quantile(q)
mask = (df < upper) & (df > lower)
return mask
t = pd.DataFrame({'train': [1,1,2,3,4,5,6,7,8,9,9],
'y': [1,0,0,1,1,0,0,1,1,1,0]})
mask = remove_outliers(t['train'], 0.1)
print(t[mask])
输出:
train y
2 2 0
3 3 1
4 4 1
5 5 0
6 6 0
7 7 1
8 8 1
其他回答
对于数据框架中的每个系列,您可以使用between和分位数来删除异常值。
x = pd.Series(np.random.normal(size=200)) # with outliers
x = x[x.between(x.quantile(.25), x.quantile(.75))] # without outliers
你可以使用布尔掩码:
import pandas as pd
def remove_outliers(df, q=0.05):
upper = df.quantile(1-q)
lower = df.quantile(q)
mask = (df < upper) & (df > lower)
return mask
t = pd.DataFrame({'train': [1,1,2,3,4,5,6,7,8,9,9],
'y': [1,0,0,1,1,0,0,1,1,1,0]})
mask = remove_outliers(t['train'], 0.1)
print(t[mask])
输出:
train y
2 2 0
3 3 1
4 4 1
5 5 0
6 6 0
7 7 1
8 8 1
像在numpy.array中那样使用布尔索引
df = pd.DataFrame({'Data':np.random.normal(size=200)})
# example dataset of normally distributed data.
df[np.abs(df.Data-df.Data.mean()) <= (3*df.Data.std())]
# keep only the ones that are within +3 to -3 standard deviations in the column 'Data'.
df[~(np.abs(df.Data-df.Data.mean()) > (3*df.Data.std()))]
# or if you prefer the other way around
对于一个系列,它是类似的:
S = pd.Series(np.random.normal(size=200))
S[~((S-S.mean()).abs() > 3*S.std())]
由于我正处于我的数据科学之旅的早期阶段,我使用下面的代码来处理异常值。
#Outlier Treatment
def outlier_detect(df):
for i in df.describe().columns:
Q1=df.describe().at['25%',i]
Q3=df.describe().at['75%',i]
IQR=Q3 - Q1
LTV=Q1 - 1.5 * IQR
UTV=Q3 + 1.5 * IQR
x=np.array(df[i])
p=[]
for j in x:
if j < LTV or j>UTV:
p.append(df[i].median())
else:
p.append(j)
df[i]=p
return df
#------------------------------------------------------------------------------
# accept a dataframe, remove outliers, return cleaned data in a new dataframe
# see http://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm
#------------------------------------------------------------------------------
def remove_outlier(df_in, col_name):
q1 = df_in[col_name].quantile(0.25)
q3 = df_in[col_name].quantile(0.75)
iqr = q3-q1 #Interquartile range
fence_low = q1-1.5*iqr
fence_high = q3+1.5*iqr
df_out = df_in.loc[(df_in[col_name] > fence_low) & (df_in[col_name] < fence_high)]
return df_out