我有一个很少列的熊猫数据帧。

现在我知道某些行是基于某个列值的异常值。

例如

列“Vol”的所有值都在12xx左右,其中一个值是4000(离群值)。

现在我想排除那些Vol列像这样的行。

所以,本质上,我需要在数据帧上放一个过滤器,这样我们就可以选择所有的行,其中某一列的值距离平均值在3个标准差之内。

实现这一点的优雅方式是什么?


当前回答

你可以使用布尔掩码:

import pandas as pd

def remove_outliers(df, q=0.05):
    upper = df.quantile(1-q)
    lower = df.quantile(q)
    mask = (df < upper) & (df > lower)
    return mask

t = pd.DataFrame({'train': [1,1,2,3,4,5,6,7,8,9,9],
                  'y': [1,0,0,1,1,0,0,1,1,1,0]})

mask = remove_outliers(t['train'], 0.1)

print(t[mask])

输出:

   train  y
2      2  0
3      3  1
4      4  1
5      5  0
6      6  0
7      7  1
8      8  1

其他回答

去掉离群值的函数

def drop_outliers(df, field_name):
    distance = 1.5 * (np.percentile(df[field_name], 75) - np.percentile(df[field_name], 25))
    df.drop(df[df[field_name] > distance + np.percentile(df[field_name], 75)].index, inplace=True)
    df.drop(df[df[field_name] < np.percentile(df[field_name], 25) - distance].index, inplace=True)

如果你喜欢方法链接,你可以得到所有数值列的布尔条件,如下所示:

df.sub(df.mean()).div(df.std()).abs().lt(3)

每一列的每个值都将根据其是否距离平均值小于三个标准差而转换为True/False。

把98和2百分位作为离群值的极限

upper_limit = np.percentile(X_train.logerror.values, 98) 
lower_limit = np.percentile(X_train.logerror.values, 2) # Filter the outliers from the dataframe
data[‘target’].loc[X_train[‘target’]>upper_limit] = upper_limit data[‘target’].loc[X_train[‘target’]<lower_limit] = lower_limit

如果你的数据帧有异常值,有很多方法可以处理这些异常值:

大多数都在我的文章中提到过:读一读

在这里找到代码:Notebook

我认为删除和删除异常值在统计上是错误的。 它使数据不同于原始数据。 也使得数据的形状不均匀,因此最好的方法是通过对数据进行对数变换来减少或避免异常值的影响。 这招对我很管用:

np.log(data.iloc[:, :])