在numpy数组上映射函数的最有效方法是什么?我目前正在做:

import numpy as np 

x = np.array([1, 2, 3, 4, 5])

# Obtain array of square of each element in x
squarer = lambda t: t ** 2
squares = np.array([squarer(xi) for xi in x])

然而,这可能非常低效,因为我在将新数组转换回numpy数组之前,使用列表推导式将其构造为Python列表。我们能做得更好吗?


当前回答

就像在这篇文章中提到的,像这样使用生成器表达式:

numpy.fromiter((<some_func>(x) for x in <something>),<dtype>,<size of something>)

其他回答

以上所有答案都比较好,但如果您需要使用自定义函数进行映射,并且您有numpy。Ndarray,你需要保留数组的形状。

我只比较了两个,但它将保留ndarray的形状。我使用了包含100万个条目的数组进行比较。这里我使用square函数,它也内置在numpy中,具有很大的性能提升,因为需要一些东西,您可以使用您选择的函数。

import numpy, time
def timeit():
    y = numpy.arange(1000000)
    now = time.time()
    numpy.array([x * x for x in y.reshape(-1)]).reshape(y.shape)        
    print(time.time() - now)
    now = time.time()
    numpy.fromiter((x * x for x in y.reshape(-1)), y.dtype).reshape(y.shape)
    print(time.time() - now)
    now = time.time()
    numpy.square(y)  
    print(time.time() - now)

输出

>>> timeit()
1.162431240081787    # list comprehension and then building numpy array
1.0775556564331055   # from numpy.fromiter
0.002948284149169922 # using inbuilt function

在这里,你可以清楚地看到numpy.fromiter工作得很好,考虑到简单的方法,如果内置函数可用,请使用它。

就像在这篇文章中提到的,像这样使用生成器表达式:

numpy.fromiter((<some_func>(x) for x in <something>),<dtype>,<size of something>)

博士TL;

正如@user2357112所指出的,应用函数的“直接”方法总是在Numpy数组上映射函数的最快和最简单的方法:

import numpy as np
x = np.array([1, 2, 3, 4, 5])
f = lambda x: x ** 2
squares = f(x)

一般避免np。向量化,因为它性能不佳,并且已经(或曾经)有许多问题。如果您正在处理其他数据类型,您可能需要研究下面所示的其他方法。

方法比较

下面是一些简单的测试,比较三种映射函数的方法,本例使用Python 3.6和NumPy 1.15.4。首先,测试的设置函数:

import timeit
import numpy as np

f = lambda x: x ** 2
vf = np.vectorize(f)

def test_array(x, n):
    t = timeit.timeit(
        'np.array([f(xi) for xi in x])',
        'from __main__ import np, x, f', number=n)
    print('array: {0:.3f}'.format(t))

def test_fromiter(x, n):
    t = timeit.timeit(
        'np.fromiter((f(xi) for xi in x), x.dtype, count=len(x))',
        'from __main__ import np, x, f', number=n)
    print('fromiter: {0:.3f}'.format(t))

def test_direct(x, n):
    t = timeit.timeit(
        'f(x)',
        'from __main__ import x, f', number=n)
    print('direct: {0:.3f}'.format(t))

def test_vectorized(x, n):
    t = timeit.timeit(
        'vf(x)',
        'from __main__ import x, vf', number=n)
    print('vectorized: {0:.3f}'.format(t))

测试五个元素(从最快到最慢排序):

x = np.array([1, 2, 3, 4, 5])
n = 100000
test_direct(x, n)      # 0.265
test_fromiter(x, n)    # 0.479
test_array(x, n)       # 0.865
test_vectorized(x, n)  # 2.906

包含100个元素:

x = np.arange(100)
n = 10000
test_direct(x, n)      # 0.030
test_array(x, n)       # 0.501
test_vectorized(x, n)  # 0.670
test_fromiter(x, n)    # 0.883

并且使用1000个或更多的数组元素:

x = np.arange(1000)
n = 1000
test_direct(x, n)      # 0.007
test_fromiter(x, n)    # 0.479
test_array(x, n)       # 0.516
test_vectorized(x, n)  # 0.945

不同版本的Python/NumPy和编译器优化会有不同的结果,所以对您的环境进行类似的测试。

使用numpy.vectorize怎么样?

import numpy as np
x = np.array([1, 2, 3, 4, 5])
squarer = lambda t: t ** 2
vfunc = np.vectorize(squarer)
vfunc(x)
# Output : array([ 1,  4,  9, 16, 25])

使用numpy.fromfunction(function, shape, **kwargs)

看到“https://docs.scipy.org/doc/numpy/reference/generated/numpy.fromfunction.html”