在numpy数组上映射函数的最有效方法是什么?我目前正在做:

import numpy as np 

x = np.array([1, 2, 3, 4, 5])

# Obtain array of square of each element in x
squarer = lambda t: t ** 2
squares = np.array([squarer(xi) for xi in x])

然而,这可能非常低效,因为我在将新数组转换回numpy数组之前,使用列表推导式将其构造为Python列表。我们能做得更好吗?


当前回答

编辑:原来的答案是误导性的,np。SQRT直接应用于数组,开销很小。

在多维情况下,您希望应用一个内建函数,操作1d数组numpy。Apply_along_axis是一个不错的选择,对于numpy和scipy中更复杂的函数组合也是如此。

先前的误导性陈述:

添加方法:

def along_axis(x):
    return np.apply_along_axis(f, 0, x)

perfplot代码给出接近np.sqrt的性能结果。

其他回答

就像在这篇文章中提到的,像这样使用生成器表达式:

numpy.fromiter((<some_func>(x) for x in <something>),<dtype>,<size of something>)

我相信在numpy的新版本(我使用1.13)中,您可以简单地通过将numpy数组传递给您为标量类型编写的函数来调用该函数,它将自动应用函数调用到numpy数组上的每个元素,并返回另一个numpy数组

>>> import numpy as np
>>> squarer = lambda t: t ** 2
>>> x = np.array([1, 2, 3, 4, 5])
>>> squarer(x)
array([ 1,  4,  9, 16, 25])

编辑:原来的答案是误导性的,np。SQRT直接应用于数组,开销很小。

在多维情况下,您希望应用一个内建函数,操作1d数组numpy。Apply_along_axis是一个不错的选择,对于numpy和scipy中更复杂的函数组合也是如此。

先前的误导性陈述:

添加方法:

def along_axis(x):
    return np.apply_along_axis(f, 0, x)

perfplot代码给出接近np.sqrt的性能结果。

使用numpy.vectorize怎么样?

import numpy as np
x = np.array([1, 2, 3, 4, 5])
squarer = lambda t: t ** 2
vfunc = np.vectorize(squarer)
vfunc(x)
# Output : array([ 1,  4,  9, 16, 25])

我已经测试了所有建议的方法加上np。数组(list(map(f, x)))和perfplot(我的一个小项目)。

消息#1:如果可以使用numpy的本机函数,就使用它。

如果你试图向量化的函数已经被向量化了(就像原始文章中的x**2例子),使用它比其他任何方法都快得多(注意对数尺度):

如果你真的需要向量化,用哪个变量并不重要。


代码重现图:

import numpy as np
import perfplot
import math


def f(x):
    # return math.sqrt(x)
    return np.sqrt(x)


vf = np.vectorize(f)


def array_for(x):
    return np.array([f(xi) for xi in x])


def array_map(x):
    return np.array(list(map(f, x)))


def fromiter(x):
    return np.fromiter((f(xi) for xi in x), x.dtype)


def vectorize(x):
    return np.vectorize(f)(x)


def vectorize_without_init(x):
    return vf(x)


b = perfplot.bench(
    setup=np.random.rand,
    n_range=[2 ** k for k in range(20)],
    kernels=[
        f,
        array_for,
        array_map,
        fromiter,
        vectorize,
        vectorize_without_init,
    ],
    xlabel="len(x)",
)
b.save("out1.svg")
b.show()