我是TensorFlow的新手。我搞不懂tf的区别。占位符和tf.Variable。在我看来,tf。占位符用于输入数据,tf。变量用于存储数据的状态。这就是我所知道的一切。

谁能给我详细解释一下他们的不同之处吗?特别是,什么时候使用tf。变量和何时使用tf.placeholder?


当前回答

简而言之,使用tf。变量为可训练变量,如权重(W)和偏差(B)为您的模型。

weights = tf.Variable(
    tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
                    stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))), name='weights')

biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')

特遣部队。占位符用于提供实际的训练示例。

images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))

这是你在训练中输入训练示例的方式:

for step in xrange(FLAGS.max_steps):
    feed_dict = {
       images_placeholder: images_feed,
       labels_placeholder: labels_feed,
     }
    _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)

你的助教。变量将被训练(修改)作为这个训练的结果。

详见https://www.tensorflow.org/versions/r0.7/tutorials/mnist/tf/index.html。(例子摘自网页。)

其他回答

简而言之,使用tf。变量为可训练变量,如权重(W)和偏差(B)为您的模型。

weights = tf.Variable(
    tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
                    stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))), name='weights')

biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')

特遣部队。占位符用于提供实际的训练示例。

images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))

这是你在训练中输入训练示例的方式:

for step in xrange(FLAGS.max_steps):
    feed_dict = {
       images_placeholder: images_feed,
       labels_placeholder: labels_feed,
     }
    _, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)

你的助教。变量将被训练(修改)作为这个训练的结果。

详见https://www.tensorflow.org/versions/r0.7/tutorials/mnist/tf/index.html。(例子摘自网页。)

区别在于tf。变量,在声明时必须提供初始值。特遣部队。占位符,你不必提供初始值,你可以在运行时在Session.run中使用feed_dict参数指定它

因为张量计算由图组成,所以最好用图来解释这两者。

以简单的线性回归为例

WX+B=Y

其中W和B代表权重和偏差,X代表观测数据的输入,Y代表观测数据的输出。

显然X和Y是同一性质(显变量),而W和B是潜变量。X和Y是样本(观测值)的值,因此需要填充一个位置,而W和B是权重和偏差,图中的变量(前一个值影响后者),应该使用不同的X和Y对进行训练。我们在占位符中放置不同的样本来训练变量。

我们只需要保存或恢复变量(在检查点)来保存或重新构建代码图。

占位符主要是不同数据集的占位符(例如训练数据或测试数据)。然而,变量在训练过程中被训练为特定的任务,即预测输入的结果或将输入映射到所需的标签。它们保持不变,直到你使用不同或相同的样本重新训练或微调模型,通常通过字典填充占位符。例如:

 session.run(a_graph, dict = {a_placeholder_name : sample_values}) 

占位符也作为参数传递给设置模型。

如果你在训练过程中改变了模型的占位符(添加、删除、改变形状等),你仍然可以重新加载检查点,而不需要任何其他修改。但是如果保存的模型的变量发生了变化,您应该相应地调整检查点以重新加载它并继续训练(图中定义的所有变量都应该在检查点中可用)。

总而言之,如果值来自样本(您已经拥有的观察结果),您可以安全地设置一个占位符来保存它们,而如果您需要训练一个参数,则利用一个变量(简单地说,为您想使用TF自动获得的值设置变量)。

在一些有趣的模型中,比如样式转换模型,输入像素将被优化,通常被称为模型变量是固定的,然后我们应该将输入(通常是随机初始化的)作为在该链接中实现的变量。

要了解更多信息,请参考这个简单明了的文档。

Tensorflow 2.0兼容答案:占位符的概念,tf。占位符在Tensorflow 2中不可用。x(>= 2.0),因为默认执行模式为“主动执行”。

但是,我们可以在图形模式下使用它们(禁用急切执行)。

版本2中TF占位符的等效命令。X是tf. compatat .v1.placeholder。

版本2中TF变量的等效命令。X等于tf。变量和如果您想从1迁移代码。X到2。X,等效命令为

tf.compat.v2.Variable。

有关Tensorflow 2.0版本的更多信息,请参阅此Tensorflow页面。

有关从版本1迁移的更多信息,请参阅迁移指南。X到2。X。

对于TF V1:

常数是有初始值的,在计算中不会发生变化; 变量具有初值,在计算中可以变化;(对于参数来说很好) 占位符没有初始值,在计算中不会改变。(非常适合像预测实例这样的输入)

对于TF V2,同样,但他们试图隐藏占位符(图形模式不是首选)。