我是TensorFlow的新手。我搞不懂tf的区别。占位符和tf.Variable。在我看来,tf。占位符用于输入数据,tf。变量用于存储数据的状态。这就是我所知道的一切。
谁能给我详细解释一下他们的不同之处吗?特别是,什么时候使用tf。变量和何时使用tf.placeholder?
我是TensorFlow的新手。我搞不懂tf的区别。占位符和tf.Variable。在我看来,tf。占位符用于输入数据,tf。变量用于存储数据的状态。这就是我所知道的一切。
谁能给我详细解释一下他们的不同之处吗?特别是,什么时候使用tf。变量和何时使用tf.placeholder?
当前回答
简而言之,使用tf。变量为可训练变量,如权重(W)和偏差(B)为您的模型。
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))), name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')
特遣部队。占位符用于提供实际的训练示例。
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
这是你在训练中输入训练示例的方式:
for step in xrange(FLAGS.max_steps):
feed_dict = {
images_placeholder: images_feed,
labels_placeholder: labels_feed,
}
_, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)
你的助教。变量将被训练(修改)作为这个训练的结果。
详见https://www.tensorflow.org/versions/r0.7/tutorials/mnist/tf/index.html。(例子摘自网页。)
其他回答
想象一个计算图。在这样的图中,我们需要一个输入节点来将数据传递到图中,这些节点应该在tensorflow中定义为占位符。
不要把Python想象成一个通用的程序。你可以写一个Python程序,做所有那些在其他答案中通过变量解释的事情,但对于张量流中的计算图,为了将数据输入到图中,你需要将这些点定义为占位符。
示例代码片段:
import numpy as np
import tensorflow as tf
### Model parameters ###
W = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
### Model input and output ###
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)
### loss ###
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
### optimizer ###
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
### training data ###
x_train = [1,2,3,4]
y_train = [0,-1,-2,-3]
### training loop ###
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):
sess.run(train, {x:x_train, y:y_train})
顾名思义,占位符是稍后提供一个值的承诺。
变量只是训练参数(W(矩阵),b(偏差),与您在日常编程中使用的正常变量相同,培训师在每次运行/步骤中更新/修改。
虽然占位符不需要任何初始值,当你创建x和y时,TF不分配任何内存,相反,当你在sesss .run()中使用feed_dict提供占位符时,TensorFlow将为它们分配适当大小的内存(x和y) -这种不受约束的特性允许我们提供任何大小和形状的数据。
简而言之:
Variable -是一个你希望训练器(例如GradientDescentOptimizer)在每一步之后更新的参数。
占位符演示-
a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
adder_node = a + b # + provides a shortcut for tf.add(a, b)
执行:
print(sess.run(adder_node, {a: 3, b:4.5}))
print(sess.run(adder_node, {a: [1,3], b: [2, 4]}))
结果是输出
7.5
[ 3. 7.]
在第一种情况下,3和4.5将分别传递给a和b,然后传递给adder_node输出7。在第二种情况下,有一个提要列表,第一步1和2将被添加,接下来的3和4 (a和b)。
相关阅读:
特遣部队。占位符doc。 特遣部队。变量doc。 变量VS占位符。
Tensorflow 2.0兼容答案:占位符的概念,tf。占位符在Tensorflow 2中不可用。x(>= 2.0),因为默认执行模式为“主动执行”。
但是,我们可以在图形模式下使用它们(禁用急切执行)。
版本2中TF占位符的等效命令。X是tf. compatat .v1.placeholder。
版本2中TF变量的等效命令。X等于tf。变量和如果您想从1迁移代码。X到2。X,等效命令为
tf.compat.v2.Variable。
有关Tensorflow 2.0版本的更多信息,请参阅此Tensorflow页面。
有关从版本1迁移的更多信息,请参阅迁移指南。X到2。X。
因为张量计算由图组成,所以最好用图来解释这两者。
以简单的线性回归为例
WX+B=Y
其中W和B代表权重和偏差,X代表观测数据的输入,Y代表观测数据的输出。
显然X和Y是同一性质(显变量),而W和B是潜变量。X和Y是样本(观测值)的值,因此需要填充一个位置,而W和B是权重和偏差,图中的变量(前一个值影响后者),应该使用不同的X和Y对进行训练。我们在占位符中放置不同的样本来训练变量。
我们只需要保存或恢复变量(在检查点)来保存或重新构建代码图。
占位符主要是不同数据集的占位符(例如训练数据或测试数据)。然而,变量在训练过程中被训练为特定的任务,即预测输入的结果或将输入映射到所需的标签。它们保持不变,直到你使用不同或相同的样本重新训练或微调模型,通常通过字典填充占位符。例如:
session.run(a_graph, dict = {a_placeholder_name : sample_values})
占位符也作为参数传递给设置模型。
如果你在训练过程中改变了模型的占位符(添加、删除、改变形状等),你仍然可以重新加载检查点,而不需要任何其他修改。但是如果保存的模型的变量发生了变化,您应该相应地调整检查点以重新加载它并继续训练(图中定义的所有变量都应该在检查点中可用)。
总而言之,如果值来自样本(您已经拥有的观察结果),您可以安全地设置一个占位符来保存它们,而如果您需要训练一个参数,则利用一个变量(简单地说,为您想使用TF自动获得的值设置变量)。
在一些有趣的模型中,比如样式转换模型,输入像素将被优化,通常被称为模型变量是固定的,然后我们应该将输入(通常是随机初始化的)作为在该链接中实现的变量。
要了解更多信息,请参考这个简单明了的文档。
简而言之,使用tf。变量为可训练变量,如权重(W)和偏差(B)为您的模型。
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))), name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')
特遣部队。占位符用于提供实际的训练示例。
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
这是你在训练中输入训练示例的方式:
for step in xrange(FLAGS.max_steps):
feed_dict = {
images_placeholder: images_feed,
labels_placeholder: labels_feed,
}
_, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)
你的助教。变量将被训练(修改)作为这个训练的结果。
详见https://www.tensorflow.org/versions/r0.7/tutorials/mnist/tf/index.html。(例子摘自网页。)