我是TensorFlow的新手。我搞不懂tf的区别。占位符和tf.Variable。在我看来,tf。占位符用于输入数据,tf。变量用于存储数据的状态。这就是我所知道的一切。
谁能给我详细解释一下他们的不同之处吗?特别是,什么时候使用tf。变量和何时使用tf.placeholder?
我是TensorFlow的新手。我搞不懂tf的区别。占位符和tf.Variable。在我看来,tf。占位符用于输入数据,tf。变量用于存储数据的状态。这就是我所知道的一切。
谁能给我详细解释一下他们的不同之处吗?特别是,什么时候使用tf。变量和何时使用tf.placeholder?
当前回答
Tensorflow 2.0兼容答案:占位符的概念,tf。占位符在Tensorflow 2中不可用。x(>= 2.0),因为默认执行模式为“主动执行”。
但是,我们可以在图形模式下使用它们(禁用急切执行)。
版本2中TF占位符的等效命令。X是tf. compatat .v1.placeholder。
版本2中TF变量的等效命令。X等于tf。变量和如果您想从1迁移代码。X到2。X,等效命令为
tf.compat.v2.Variable。
有关Tensorflow 2.0版本的更多信息,请参阅此Tensorflow页面。
有关从版本1迁移的更多信息,请参阅迁移指南。X到2。X。
其他回答
在TensorFlow中,变量只是另一个张量(比如tf。常量或tf.placeholder)。碰巧变量可以通过计算来修改。特遣部队。占位符用于将在运行时提供给计算的外部输入(例如训练数据)。特遣部队。变量用于作为计算的一部分并将被计算修改的输入(例如神经网络的权重)。
简而言之,使用tf。变量为可训练变量,如权重(W)和偏差(B)为您的模型。
weights = tf.Variable(
tf.truncated_normal([IMAGE_PIXELS, hidden1_units],
stddev=1.0 / math.sqrt(float(IMAGE_PIXELS))), name='weights')
biases = tf.Variable(tf.zeros([hidden1_units]), name='biases')
特遣部队。占位符用于提供实际的训练示例。
images_placeholder = tf.placeholder(tf.float32, shape=(batch_size, IMAGE_PIXELS))
labels_placeholder = tf.placeholder(tf.int32, shape=(batch_size))
这是你在训练中输入训练示例的方式:
for step in xrange(FLAGS.max_steps):
feed_dict = {
images_placeholder: images_feed,
labels_placeholder: labels_feed,
}
_, loss_value = sess.run([train_op, loss], feed_dict=feed_dict)
你的助教。变量将被训练(修改)作为这个训练的结果。
详见https://www.tensorflow.org/versions/r0.7/tutorials/mnist/tf/index.html。(例子摘自网页。)
区别在于tf。变量,在声明时必须提供初始值。特遣部队。占位符,你不必提供初始值,你可以在运行时在Session.run中使用feed_dict参数指定它
变量
TensorFlow变量是表示程序操纵的共享持久状态的最佳方式。变量是通过tf操作的。变量类。内部是一个tf。变量存储一个持久张量。特定的操作允许你读取和修改这个张量的值。这些修改在多个tf中可见。会话,因此多个工作人员可以看到tf.Variable的相同值。变量在使用前必须初始化。
例子:
x = tf.Variable(3, name="x")
y = tf.Variable(4, name="y")
f = x*x*y + y + 2
这将创建一个计算图。变量(x和y)可以被初始化,函数(f)在一个tensorflow会话中被计算,如下所示:
with tf.Session() as sess:
x.initializer.run()
y.initializer.run()
result = f.eval()
print(result)
42
占位符
占位符是一个节点(与变量相同),其值可以在将来初始化。这些节点基本上在运行时输出分配给它们的值。占位符节点可以使用tf.placeholder()类来分配,你可以为它提供参数,比如变量的类型和/或它的形状。占位符广泛用于表示机器学习模型中的训练数据集,因为训练数据集不断变化。
例子:
A = tf.placeholder(tf.float32, shape=(None, 3))
B = A + 5
注意:维度的“None”表示“任何大小”。
with tf.Session as sess:
B_val_1 = B.eval(feed_dict={A: [[1, 2, 3]]})
B_val_2 = B.eval(feed_dict={A: [[4, 5, 6], [7, 8, 9]]})
print(B_val_1)
[[6. 7. 8.]]
print(B_val_2)
[[9. 10. 11.]
[12. 13. 14.]]
引用:
https://www.tensorflow.org/guide/variables https://www.tensorflow.org/api_docs/python/tf/placeholder O'Reilly:使用Scikit-Learn和Tensorflow进行动手机器学习
博士TL;
变量
为了学习参数 价值观可以从培训中获得 初始值是必需的(通常是随机的)
占位符
为数据分配存储(例如在馈送期间用于图像像素数据) 初始值不是必需的(但可以设置,参见tf.placeholder_with_default)