我是TensorFlow的新手。我搞不懂tf的区别。占位符和tf.Variable。在我看来,tf。占位符用于输入数据,tf。变量用于存储数据的状态。这就是我所知道的一切。

谁能给我详细解释一下他们的不同之处吗?特别是,什么时候使用tf。变量和何时使用tf.placeholder?


当前回答

占位符:

A placeholder is simply a variable that we will assign data to at a later date. It allows us to create our operations and build our computation graph, without needing the data. In TensorFlow terminology, we then feed data into the graph through these placeholders. Initial values are not required but can have default values with tf.placeholder_with_default) We have to provide value at runtime like : a = tf.placeholder(tf.int16) // initialize placeholder value b = tf.placeholder(tf.int16) // initialize placeholder value use it using session like : sess.run(add, feed_dict={a: 2, b: 3}) // this value we have to assign at runtime

变量:

TensorFlow变量是表示共享的最佳方式, 由程序操纵的持久状态。 变量是通过tf操作的。变量类。一个特遣部队。变量 表示一个张量,其值可以通过对其运行操作来改变。

例如:tf。变量("欢迎来到tensorflow!! ")

其他回答

在TensorFlow中,变量只是另一个张量(比如tf。常量或tf.placeholder)。碰巧变量可以通过计算来修改。特遣部队。占位符用于将在运行时提供给计算的外部输入(例如训练数据)。特遣部队。变量用于作为计算的一部分并将被计算修改的输入(例如神经网络的权重)。

对于TF V1:

常数是有初始值的,在计算中不会发生变化; 变量具有初值,在计算中可以变化;(对于参数来说很好) 占位符没有初始值,在计算中不会改变。(非常适合像预测实例这样的输入)

对于TF V2,同样,但他们试图隐藏占位符(图形模式不是首选)。

示例代码片段:

import numpy as np
import tensorflow as tf

### Model parameters ###
W = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)

### Model input and output ###
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)

### loss ###
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares

### optimizer ###
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

### training data ###
x_train = [1,2,3,4]
y_train = [0,-1,-2,-3]

### training loop ###
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):
  sess.run(train, {x:x_train, y:y_train})

顾名思义,占位符是稍后提供一个值的承诺。

变量只是训练参数(W(矩阵),b(偏差),与您在日常编程中使用的正常变量相同,培训师在每次运行/步骤中更新/修改。

虽然占位符不需要任何初始值,当你创建x和y时,TF不分配任何内存,相反,当你在sesss .run()中使用feed_dict提供占位符时,TensorFlow将为它们分配适当大小的内存(x和y) -这种不受约束的特性允许我们提供任何大小和形状的数据。


简而言之:

Variable -是一个你希望训练器(例如GradientDescentOptimizer)在每一步之后更新的参数。

占位符演示-

a = tf.placeholder(tf.float32)
b = tf.placeholder(tf.float32)
adder_node = a + b  # + provides a shortcut for tf.add(a, b)

执行:

print(sess.run(adder_node, {a: 3, b:4.5}))
print(sess.run(adder_node, {a: [1,3], b: [2, 4]}))

结果是输出

7.5
[ 3.  7.]

在第一种情况下,3和4.5将分别传递给a和b,然后传递给adder_node输出7。在第二种情况下,有一个提要列表,第一步1和2将被添加,接下来的3和4 (a和b)。


相关阅读:

特遣部队。占位符doc。 特遣部队。变量doc。 变量VS占位符。

想象一个计算图。在这样的图中,我们需要一个输入节点来将数据传递到图中,这些节点应该在tensorflow中定义为占位符。

不要把Python想象成一个通用的程序。你可以写一个Python程序,做所有那些在其他答案中通过变量解释的事情,但对于张量流中的计算图,为了将数据输入到图中,你需要将这些点定义为占位符。

Tensorflow使用三种类型的容器来存储/执行过程

Constants:Constants保存典型数据。 变量:数据值将被改变,相应的函数,如cost_function.. 占位符:训练/测试数据将被传递到图表中。