我在读CLRS的《算法导论》。在第二章中,作者提到了“循环不变量”。什么是循环不变量?


当前回答

值得注意的是,循环不变量可以帮助迭代算法的设计,因为它被认为是一个断言,表示变量之间的重要关系,在每次迭代开始时和循环结束时,这些关系必须为真。如果这是成立的,计算是在有效的道路上。如果为false,则算法失败。

其他回答

在这种情况下,不变量意味着在每次循环迭代的某一点上必须为真条件。

在契约编程中,不变量是在调用任何公共方法之前和之后必须为真(通过契约)的条件。

简单地说,循环不变量是对循环的每次迭代都成立的某个谓词(条件)。例如,让我们看一个简单的For循环,它是这样的:

int j = 9;
for(int i=0; i<10; i++)  
  j--;

在这个例子中,i + j == 9(对于每个迭代)是正确的。一个较弱的不变式也是成立的 I >= 0 && I <= 10。

对不起,我没有评论权限。

正如你提到的@Tomas Petricek

另一个较弱的不变式也是成立的,即i >= 0 && i < 10(因为这是连续条件!)”

为什么它是循环不变量?

我希望我没有错,据我理解[1],循环不变将在循环开始时为真(初始化),它将在每次迭代(维护)之前和之后为真,它也将在循环结束后为真(终止)。但是在最后一次迭代之后,i变成了10。因此,条件i >= 0 && i < 10变为假值并终止循环。它违反了循环不变量的第三个性质(终止)。

[1] http://www.win.tue.nl/~kbuchin/teaching/JBP030/notebooks/loop-invariants.html

之前的回答已经很好地定义了循环不变量。

以下是CLRS的作者如何使用循环不变量来证明插入排序的正确性。

插入排序算法(见书):

INSERTION-SORT(A)
    for j ← 2 to length[A]
        do key ← A[j]
        // Insert A[j] into the sorted sequence A[1..j-1].
        i ← j - 1
        while i > 0 and A[i] > key
            do A[i + 1] ← A[i]
            i ← i - 1
        A[i + 1] ← key

循环不变量在这种情况下: 子数组[1到j-1]始终被排序。

现在让我们检查一下,证明这个算法是正确的。

初始化:在第一次迭代j=2之前。所以子数组[1:1]就是要测试的数组。因为它只有一个元素,所以它是有序的。这样不变性就被满足了。

维护:这可以通过在每次迭代后检查不变量来轻松验证。在这种情况下,它被满足了。

终止:这是我们将证明算法正确性的步骤。

当循环结束时,j=n+1。循环不变量再次被满足。这意味着子数组[1到n]应该排序。

这就是我们想用算法做的。因此,我们的算法是正确的。

《如何思考算法》的定义,Jeff Edmonds著

循环不变式是放置在循环和循环顶部的断言 每次计算返回到循环的顶部时,这必须成立。