当我们必须预测分类(或离散)结果的值时,我们使用逻辑回归。我相信我们使用线性回归来预测给定输入值的结果值。
那么,这两种方法有什么不同呢?
当我们必须预测分类(或离散)结果的值时,我们使用逻辑回归。我相信我们使用线性回归来预测给定输入值的结果值。
那么,这两种方法有什么不同呢?
当前回答
简而言之: 线性回归给出连续的输出。即在一个值范围内的任何值。 逻辑回归给出离散的输出。即Yes/No, 0/1类型的输出。
其他回答
逻辑回归用于预测分类输出,如是/否,低/中/高等。你基本上有2种类型的逻辑回归二元逻辑回归(是/否,批准/不批准)或多类逻辑回归(低/中/高,0-9等数字)
另一方面,线性回归是因变量(y)是连续的。 Y = mx + c是一个简单的线性回归方程(m =斜率,c是Y截距)。多元线性回归有不止一个自变量(x1,x2,x3,…)等)
| Basis | Linear | Logistic |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Basic | The data is modelled using a straight line. | The probability of some obtained event is represented as a linear function of a combination of predictor variables. |
| Linear relationship between dependent and independent variables | Is required | Not required |
| The independent variable | Could be correlated with each other. (Specially in multiple linear regression) | Should not be correlated with each other (no multicollinearity exist). |
在线性回归中,结果(因变量)是连续的。它可以有无限个可能值中的任意一个。在逻辑回归中,结果(因变量)只有有限数量的可能值。
例如,如果X包含以平方英尺为单位的房屋面积,而Y包含这些房屋的相应销售价格,您可以使用线性回归来预测销售价格作为房屋大小的函数。虽然可能的销售价格实际上可能没有任何值,但有很多可能的值,因此可以选择线性回归模型。
相反,如果你想根据房子的大小来预测房子是否会卖到20万美元以上,你会使用逻辑回归。可能的输出是Yes,房子将以超过20万美元的价格出售,或者No,房子不会。
线性回归和逻辑回归的基本区别是: 线性回归用于预测一个连续的或数值,但当我们寻找预测一个值,是分类逻辑回归进入画面。
二元分类采用逻辑回归。
简单地说,如果在线性回归模型中有更多的测试用例到达,这些测试用例远离预测y=1和y=0的阈值(例如=0.5)。在这种情况下,假设就会改变,变得更糟。因此,线性回归模型不适用于分类问题。
另一个问题是,如果分类是y=0和y=1, h(x)可以是> 1或< 0。因此,我们使用Logistic回归0<=h(x)<=1。