最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。

我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。

Arrays.sort(array);

面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?


当前回答

这个问题只需一行c++代码就可以用N log(100)的复杂度(而不是N log N)来回答。

 std::vector<int> myvector = ...; // Define your 1 billion numbers. 
                                 // Assumed integer just for concreteness 
 std::partial_sort (myvector.begin(), myvector.begin()+100, myvector.end());

最终答案将是一个向量,其中前100个元素保证是数组中最大的100个数字,而其余元素是无序的

c++ STL(标准库)对于这类问题非常方便。

注意:我并不是说这是最佳的解决方案,但它可以挽救你的面试。

其他回答

我做了我自己的代码,不确定它是否是“面试官”所寻找的

private static final int MAX=100;
 PriorityQueue<Integer> queue = new PriorityQueue<>(MAX);
        queue.add(array[0]);
        for (int i=1;i<array.length;i++)
        {

            if(queue.peek()<array[i])
            {
                if(queue.size() >=MAX)
                {
                    queue.poll();
                }
                queue.add(array[i]);

            }

        }

简单的解决方案是使用优先队列,将前100个数字添加到队列中,并跟踪队列中最小的数字,然后遍历其他10亿个数字,每当我们发现一个比优先队列中最大的数字大的数字时,我们删除最小的数字,添加新的数字,并再次跟踪队列中最小的数字。

如果这些数字是随机顺序的,这就很好了,因为当我们迭代10亿个随机数字时,下一个数字是目前为止最大的100个数字之一的情况是非常罕见的。但这些数字可能不是随机的。如果数组已经按升序排序,则始终向优先队列插入一个元素。

我们先从数组中选取100,000个随机数。为了避免可能很慢的随机访问,我们添加了400个随机组,每个组有250个连续的数字。通过这种随机选择,我们可以非常确定,剩下的数字中很少有进入前100位的,因此执行时间将非常接近于一个简单的循环,将10亿个数字与某个最大值进行比较。

你可以保留一个最大的100个数字的优先队列,遍历10亿个数字。每当遇到大于队列中最小数字(队列头)的数字时,删除队列头并将新数字添加到队列中。

用堆实现的优先级队列的插入+删除复杂度为O(log K).(其中K = 100,要查找的元素数量。N = 10亿,数组中元素的总数)。

在最坏的情况下,你得到十亿*log2(100)这比十亿*log2(十亿)对于O(N log N)基于比较的排序要好。

一般来说,如果你需要一组N个数字中最大的K个数字,复杂度是O(N log K)而不是O(N log N),当K与N相比非常小时,这可能非常重要。


这种优先级队列算法的预期时间非常有趣,因为在每次迭代中可能会出现插入,也可能不会出现插入。

第i个数字插入队列的概率是一个随机变量大于同一分布中至少i- k个随机变量的概率(前k个数字自动添加到队列中)。我们可以使用顺序统计(见链接)来计算这个概率。

例如,假设这些数字是从{0,1}中均匀随机选择的,第(i-k)个数字(从i个数字中)的期望值为(i-k)/i,并且随机变量大于此值的概率为1-[(i-k)/i] = k/i。

因此,期望插入数为:

期望运行时间可表示为:

(k时间生成包含前k个元素的队列,然后是n-k个比较,以及如上所述的预期插入次数,每次插入的平均时间为log(k)/2)

注意,当N与K相比非常大时,这个表达式更接近于N而不是nlog K。这有点直观,就像在这个问题的情况下,即使经过10,000次迭代(与十亿次相比非常小),一个数字被插入队列的机会也非常小。

但是我们不知道数组的值是均匀分布的。它们可能趋向于增加,在这种情况下,大多数或所有数字将成为所见最大的100个数字集合的新候选数。这个算法的最坏情况是O(N log K)

或者如果它们呈递减的趋势,最大的100个数字中的大多数将会非常早,我们的最佳情况运行时间本质上是O(N + K log K)对于K比N小得多的K,它就是O(N)


脚注1:O(N)整数排序/直方图

计数排序或基数排序都是O(N),但通常有更大的常数因子,使它们在实践中比比较排序更差。在某些特殊情况下,它们实际上相当快,主要是对于窄整数类型。

例如,计数排序在数字很小的情况下表现良好。16位数字只需要2^16个计数器的数组。而不是实际展开到一个排序的数组,你可以扫描你建立的直方图作为计数排序的一部分。

在对数组进行直方图化之后,您可以快速回答任何顺序统计的查询,例如最大的99个数字,最大的200到100个数字)32位数字将计数分散到一个更大的数组或计数器哈希表中,可能需要16gib的内存(每个2^32个计数器4字节)。在真正的cpu上,可能会有很多TLB和缓存失误,不像2^16个元素的数组,L2缓存通常会命中。

类似地,Radix Sort可以在第一次传递后只查看顶部的桶。但常数因子仍然可能大于logk,这取决于K。

注意,每个计数器的大小足够大,即使所有N个整数都是重复的,也不会溢出。10亿略小于2^30,所以一个30位无符号计数器就足够了。32位有符号或无符号整数就可以了。

如果有更多的计数器,则可能需要64位计数器,初始化为零并随机访问需要占用两倍的内存。或者是少数溢出16或32位整数的计数器的哨兵值,以指示计数的其余部分在其他地方(在一个小字典中,例如映射到64位计数器的哈希表中)。

首先取1000个元素并将它们添加到一个max堆中。现在取出前最多100个元素并将其存储在某个地方。现在从文件中选择接下来的900个元素,并将它们与最后100个最高的元素一起添加到堆中。

一直重复这个过程,从堆中取出100个元素,从文件中添加900个元素。

从100个元素中最后选出的100个元素将从10亿个数字中选出最大的100个元素。

取十亿个数字中的前一百个,然后排序。现在只需遍历十亿,如果源数大于100中最小的数,则按排序顺序插入。你得到的结果更接近于O(n)除以集合的大小。