2023-08-25 09:00:07

树对树

我一直很喜欢树,O(n*log(n))和它们的整洁。然而,我所认识的每个软件工程师都尖锐地问过我为什么要使用TreeSet。从CS的背景来看,我不认为你使用什么很重要,我也不关心在哈希函数和桶(在Java的情况下)上搞得一团糟。

在哪些情况下,我应该在树集上使用HashSet ?


当前回答

消息编辑(完全重写)当顺序无关紧要时,就是这样。两者都应该给出Log(n) -看看其中一个是否比另一个快5%以上是有用的。HashSet可以在循环中给出O(1)测试,应该可以揭示它是否正确。

其他回答

即使在11年后,也没有人想到提到一个非常重要的区别。

你认为如果HashSet等于TreeSet,那么反过来也成立吗?看看这段代码:

TreeSet<String> treeSet = new TreeSet<>(String.CASE_INSENSITIVE_ORDER);
HashSet<String> hashSet = new HashSet<>();
treeSet.add("a");
hashSet.add("A");
System.out.println(hashSet.equals(treeSet));
System.out.println(treeSet.equals(hashSet));

尝试猜测输出,然后徘徊在代码片段下面,看看真正的输出是什么。准备好了吗?给你:

假 真正的

没错,如果比较器与等号不一致,它们就不具有等价关系。原因是TreeSet使用比较器来确定等价性,而HashSet使用等号。在内部,它们使用HashMap和TreeMap,所以你应该预料到上述map也会有这种行为。

最初的回答

HashSet是O(1)来访问元素,所以这当然很重要。但是保持集合中对象的顺序是不可能的。

如果维护顺序(根据值而不是插入顺序)对您很重要,TreeSet是有用的。但是,正如您所注意到的,您正在以顺序换取访问元素的更慢时间:基本操作为O(log n)。

来自TreeSet的javadocs:

该实现为基本操作(添加、删除和包含)提供了log(n)的时间成本。

TreeSet是两个排序集合之一(另一个是 TreeMap)。它使用红黑树结构(但你知道),并保证 元素会按照自然的顺序,按升序排列。可选地, 您可以使用构造函数构造TreeSet,该构造函数允许您为集合提供您的 自己制定顺序规则(而不是依赖于定义的顺序) 通过使用Comparable或Comparator)

LinkedHashSet是HashSet的有序版本 在所有元素之间维护一个双链接列表。使用这个类而不是HashSet 当你关心迭代顺序时。迭代HashSet时 顺序是不可预测的,而LinkedHashSet允许您迭代元素 按照它们被插入的顺序

基于@shevchyk在地图上可爱的视觉回答,以下是我的看法:

╔══════════════╦═════════════════════╦═══════════════════╦═════════════════════╗
║   Property   ║       HashSet       ║      TreeSet      ║     LinkedHashSet   ║
╠══════════════╬═════════════════════╬═══════════════════╬═════════════════════╣
║              ║  no guarantee order ║ sorted according  ║                     ║
║   Order      ║ will remain constant║ to the natural    ║    insertion-order  ║
║              ║      over time      ║    ordering       ║                     ║
╠══════════════╬═════════════════════╬═══════════════════╬═════════════════════╣
║ Add/remove   ║        O(1)         ║     O(log(n))     ║        O(1)         ║
╠══════════════╬═════════════════════╬═══════════════════╬═════════════════════╣
║              ║                     ║   NavigableSet    ║                     ║
║  Interfaces  ║         Set         ║       Set         ║         Set         ║
║              ║                     ║    SortedSet      ║                     ║
╠══════════════╬═════════════════════╬═══════════════════╬═════════════════════╣
║              ║                     ║    not allowed    ║                     ║
║  Null values ║       allowed       ║ 1st element only  ║      allowed        ║
║              ║                     ║     in Java 7     ║                     ║
╠══════════════╬═════════════════════╩═══════════════════╩═════════════════════╣
║              ║   Fail-fast behavior of an iterator cannot be guaranteed      ║
║   Fail-fast  ║ impossible to make any hard guarantees in the presence of     ║
║   behavior   ║           unsynchronized concurrent modification              ║
╠══════════════╬═══════════════════════════════════════════════════════════════╣
║      Is      ║                                                               ║
║ synchronized ║              implementation is not synchronized               ║
╚══════════════╩═══════════════════════════════════════════════════════════════╝

A lot of answers have been given, based on technical considerations, especially around performance. According to me, choice between TreeSet and HashSet matters. But I would rather say the choice should be driven by conceptual considerations first. If, for the objects your need to manipulate, a natural ordering does not make sense, then do not use TreeSet. It is a sorted set, since it implements SortedSet. So it means you need to override function compareTo, which should be consistent with what returns function equals. For example if you have a set of objects of a class called Student, then I do not think a TreeSet would make sense, since there is no natural ordering between students. You can order them by their average grade, okay, but this is not a "natural ordering". Function compareTo would return 0 not only when two objects represent the same student, but also when two different students have the same grade. For the second case, equals would return false (unless you decide to make the latter return true when two different students have the same grade, which would make equals function have a misleading meaning, not to say a wrong meaning.) Please note this consistency between equals and compareTo is optional, but strongly recommended. Otherwise the contract of interface Set is broken, making your code misleading to other people, thus also possibly leading to unexpected behavior.

这个链接可能是关于这个问题的一个很好的信息来源。