为什么或者为什么不呢?
当前回答
Range()返回列表,xrange()返回xrange对象。
Xrange()更快一点,内存效率更高一点。但是收益不是很大。
列表使用的额外内存当然不仅仅是浪费,列表有更多的功能(切片、重复、插入……)。具体的区别可以在文档中找到。没有硬性规定,需要什么就用什么。
Python 3.0仍在开发中,但IIRC range()将非常类似于xrange()的2。X和list(range())可以用来生成列表。
其他回答
不,它们都有自己的用途:
迭代时使用xrange(),因为它节省内存。说:
for x in xrange(1, one_zillion):
而不是:
for x in range(1, one_zillion):
另一方面,如果实际需要一个数字列表,则使用range()。
multiples_of_seven = range(7,100,7)
print "Multiples of seven < 100: ", multiples_of_seven
Range (): Range(1,10)返回1到10个数字的列表,并将整个列表保存在内存中。 xrange():类似于range(),但不是返回一个列表,而是返回一个根据需要生成范围内数字的对象。对于循环,这比range()略快,内存效率更高。xrange()对象类似于迭代器,并根据需要生成数字(惰性求值)。
In [1]: range(1,10)
Out[1]: [1, 2, 3, 4, 5, 6, 7, 8, 9]
In [2]: xrange(10)
Out[2]: xrange(10)
In [3]: print xrange.__doc__
Out[3]: xrange([start,] stop[, step]) -> xrange object
range()所做的事情与Python 3中xrange()所做的事情相同,并且Python 3中不存在术语xrange()。 如果多次迭代同一个序列,那么Range()实际上在某些场景中更快。Xrange()每次都必须重构整数对象,但range()将拥有真正的整数对象。
我只是想说,获得一个具有切片和索引功能的xrange对象真的不是那么困难。我写了一些代码,工作得很好,就像xrange一样快,当它计数(迭代)。
from __future__ import division
def read_xrange(xrange_object):
# returns the xrange object's start, stop, and step
start = xrange_object[0]
if len(xrange_object) > 1:
step = xrange_object[1] - xrange_object[0]
else:
step = 1
stop = xrange_object[-1] + step
return start, stop, step
class Xrange(object):
''' creates an xrange-like object that supports slicing and indexing.
ex: a = Xrange(20)
a.index(10)
will work
Also a[:5]
will return another Xrange object with the specified attributes
Also allows for the conversion from an existing xrange object
'''
def __init__(self, *inputs):
# allow inputs of xrange objects
if len(inputs) == 1:
test, = inputs
if type(test) == xrange:
self.xrange = test
self.start, self.stop, self.step = read_xrange(test)
return
# or create one from start, stop, step
self.start, self.step = 0, None
if len(inputs) == 1:
self.stop, = inputs
elif len(inputs) == 2:
self.start, self.stop = inputs
elif len(inputs) == 3:
self.start, self.stop, self.step = inputs
else:
raise ValueError(inputs)
self.xrange = xrange(self.start, self.stop, self.step)
def __iter__(self):
return iter(self.xrange)
def __getitem__(self, item):
if type(item) is int:
if item < 0:
item += len(self)
return self.xrange[item]
if type(item) is slice:
# get the indexes, and then convert to the number
start, stop, step = item.start, item.stop, item.step
start = start if start != None else 0 # convert start = None to start = 0
if start < 0:
start += start
start = self[start]
if start < 0: raise IndexError(item)
step = (self.step if self.step != None else 1) * (step if step != None else 1)
stop = stop if stop is not None else self.xrange[-1]
if stop < 0:
stop += stop
stop = self[stop]
stop = stop
if stop > self.stop:
raise IndexError
if start < self.start:
raise IndexError
return Xrange(start, stop, step)
def index(self, value):
error = ValueError('object.index({0}): {0} not in object'.format(value))
index = (value - self.start)/self.step
if index % 1 != 0:
raise error
index = int(index)
try:
self.xrange[index]
except (IndexError, TypeError):
raise error
return index
def __len__(self):
return len(self.xrange)
老实说,我认为整个问题有点傻,xrange应该做所有这些…
Xrange()更有效,因为它每次只生成一个对象,而不是生成一个对象列表。而不是100个整数,以及它们所有的开销,以及将它们放入的列表,你每次只需要一个整数。更快的生成,更好的内存使用,更高效的代码。
除非我特别需要一个列表,否则我总是喜欢xrange()
You should favour range() over xrange() only when you need an actual list. For instance, when you want to modify the list returned by range(), or when you wish to slice it. For iteration or even just normal indexing, xrange() will work fine (and usually much more efficiently). There is a point where range() is a bit faster than xrange() for very small lists, but depending on your hardware and various other details, the break-even can be at a result of length 1 or 2; not something to worry about. Prefer xrange().
推荐文章
- 从matplotlib中的颜色映射中获取单个颜色
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列
- 熊猫在每组中获得最高的n个记录