为什么或者为什么不呢?
当前回答
虽然在大多数情况下xrange比range快,但性能上的差异非常小。下面的小程序比较了range和xrange的迭代:
import timeit
# Try various list sizes.
for list_len in [1, 10, 100, 1000, 10000, 100000, 1000000]:
# Time doing a range and an xrange.
rtime = timeit.timeit('a=0;\nfor n in range(%d): a += n'%list_len, number=1000)
xrtime = timeit.timeit('a=0;\nfor n in xrange(%d): a += n'%list_len, number=1000)
# Print the result
print "Loop list of len %d: range=%.4f, xrange=%.4f"%(list_len, rtime, xrtime)
下面的结果显示xrange确实更快,但还不足以让人担心。
Loop list of len 1: range=0.0003, xrange=0.0003
Loop list of len 10: range=0.0013, xrange=0.0011
Loop list of len 100: range=0.0068, xrange=0.0034
Loop list of len 1000: range=0.0609, xrange=0.0438
Loop list of len 10000: range=0.5527, xrange=0.5266
Loop list of len 100000: range=10.1666, xrange=7.8481
Loop list of len 1000000: range=168.3425, xrange=155.8719
所以无论如何都要使用xrange,但除非您在受限的硬件上,否则不要太担心它。
其他回答
Xrange()更有效,因为它每次只生成一个对象,而不是生成一个对象列表。而不是100个整数,以及它们所有的开销,以及将它们放入的列表,你每次只需要一个整数。更快的生成,更好的内存使用,更高效的代码。
除非我特别需要一个列表,否则我总是喜欢xrange()
不,它们都有自己的用途:
迭代时使用xrange(),因为它节省内存。说:
for x in xrange(1, one_zillion):
而不是:
for x in range(1, one_zillion):
另一方面,如果实际需要一个数字列表,则使用range()。
multiples_of_seven = range(7,100,7)
print "Multiples of seven < 100: ", multiples_of_seven
虽然在大多数情况下xrange比range快,但性能上的差异非常小。下面的小程序比较了range和xrange的迭代:
import timeit
# Try various list sizes.
for list_len in [1, 10, 100, 1000, 10000, 100000, 1000000]:
# Time doing a range and an xrange.
rtime = timeit.timeit('a=0;\nfor n in range(%d): a += n'%list_len, number=1000)
xrtime = timeit.timeit('a=0;\nfor n in xrange(%d): a += n'%list_len, number=1000)
# Print the result
print "Loop list of len %d: range=%.4f, xrange=%.4f"%(list_len, rtime, xrtime)
下面的结果显示xrange确实更快,但还不足以让人担心。
Loop list of len 1: range=0.0003, xrange=0.0003
Loop list of len 10: range=0.0013, xrange=0.0011
Loop list of len 100: range=0.0068, xrange=0.0034
Loop list of len 1000: range=0.0609, xrange=0.0438
Loop list of len 10000: range=0.5527, xrange=0.5266
Loop list of len 100000: range=10.1666, xrange=7.8481
Loop list of len 1000000: range=168.3425, xrange=155.8719
所以无论如何都要使用xrange,但除非您在受限的硬件上,否则不要太担心它。
书中给出了一个很好的例子:Practical Python By Magnus Lie Hetland
>>> zip(range(5), xrange(100000000))
[(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]
我不建议在前面的例子中使用range而不是xrange——尽管如此 只需要前五个数字,range计算所有数字,这可能需要很多时间 的时间。使用xrange,这不是问题,因为它只计算所需的数字。
是的,我读了@Brian的回答:在python 3中,range()是一个生成器,xrange()不存在。
Range()返回列表,xrange()返回xrange对象。
Xrange()更快一点,内存效率更高一点。但是收益不是很大。
列表使用的额外内存当然不仅仅是浪费,列表有更多的功能(切片、重复、插入……)。具体的区别可以在文档中找到。没有硬性规定,需要什么就用什么。
Python 3.0仍在开发中,但IIRC range()将非常类似于xrange()的2。X和list(range())可以用来生成列表。
推荐文章
- Numpy Max vs amax vs maximum
- 我应该在.gitignore文件中添加Django迁移文件吗?
- 每n行有熊猫
- 实例属性attribute_name定义在__init__之外
- 如何获取在Python中捕获的异常的名称?
- 第一次出现的值大于现有值的Numpy
- 如何从Python函数中返回两个值?
- 前一个月的Python日期
- Python中方括号括起来的列表和圆括号括起来的列表有什么区别?
- Python日志记录不输出任何东西
- 每n秒运行特定代码
- SQLAlchemy是否有与Django的get_or_create等价的函数?
- 如何将python datetime转换为字符串,具有可读格式的日期?
- 美丽的汤和提取div及其内容的ID
- 在Python中重置生成器对象