为什么或者为什么不呢?
当前回答
虽然在大多数情况下xrange比range快,但性能上的差异非常小。下面的小程序比较了range和xrange的迭代:
import timeit
# Try various list sizes.
for list_len in [1, 10, 100, 1000, 10000, 100000, 1000000]:
# Time doing a range and an xrange.
rtime = timeit.timeit('a=0;\nfor n in range(%d): a += n'%list_len, number=1000)
xrtime = timeit.timeit('a=0;\nfor n in xrange(%d): a += n'%list_len, number=1000)
# Print the result
print "Loop list of len %d: range=%.4f, xrange=%.4f"%(list_len, rtime, xrtime)
下面的结果显示xrange确实更快,但还不足以让人担心。
Loop list of len 1: range=0.0003, xrange=0.0003
Loop list of len 10: range=0.0013, xrange=0.0011
Loop list of len 100: range=0.0068, xrange=0.0034
Loop list of len 1000: range=0.0609, xrange=0.0438
Loop list of len 10000: range=0.5527, xrange=0.5266
Loop list of len 100000: range=10.1666, xrange=7.8481
Loop list of len 1000000: range=168.3425, xrange=155.8719
所以无论如何都要使用xrange,但除非您在受限的硬件上,否则不要太担心它。
其他回答
不,它们都有自己的用途:
迭代时使用xrange(),因为它节省内存。说:
for x in xrange(1, one_zillion):
而不是:
for x in range(1, one_zillion):
另一方面,如果实际需要一个数字列表,则使用range()。
multiples_of_seven = range(7,100,7)
print "Multiples of seven < 100: ", multiples_of_seven
Range (): Range(1,10)返回1到10个数字的列表,并将整个列表保存在内存中。 xrange():类似于range(),但不是返回一个列表,而是返回一个根据需要生成范围内数字的对象。对于循环,这比range()略快,内存效率更高。xrange()对象类似于迭代器,并根据需要生成数字(惰性求值)。
In [1]: range(1,10)
Out[1]: [1, 2, 3, 4, 5, 6, 7, 8, 9]
In [2]: xrange(10)
Out[2]: xrange(10)
In [3]: print xrange.__doc__
Out[3]: xrange([start,] stop[, step]) -> xrange object
range()所做的事情与Python 3中xrange()所做的事情相同,并且Python 3中不存在术语xrange()。 如果多次迭代同一个序列,那么Range()实际上在某些场景中更快。Xrange()每次都必须重构整数对象,但range()将拥有真正的整数对象。
Xrange()更有效,因为它每次只生成一个对象,而不是生成一个对象列表。而不是100个整数,以及它们所有的开销,以及将它们放入的列表,你每次只需要一个整数。更快的生成,更好的内存使用,更高效的代码。
除非我特别需要一个列表,否则我总是喜欢xrange()
虽然在大多数情况下xrange比range快,但性能上的差异非常小。下面的小程序比较了range和xrange的迭代:
import timeit
# Try various list sizes.
for list_len in [1, 10, 100, 1000, 10000, 100000, 1000000]:
# Time doing a range and an xrange.
rtime = timeit.timeit('a=0;\nfor n in range(%d): a += n'%list_len, number=1000)
xrtime = timeit.timeit('a=0;\nfor n in xrange(%d): a += n'%list_len, number=1000)
# Print the result
print "Loop list of len %d: range=%.4f, xrange=%.4f"%(list_len, rtime, xrtime)
下面的结果显示xrange确实更快,但还不足以让人担心。
Loop list of len 1: range=0.0003, xrange=0.0003
Loop list of len 10: range=0.0013, xrange=0.0011
Loop list of len 100: range=0.0068, xrange=0.0034
Loop list of len 1000: range=0.0609, xrange=0.0438
Loop list of len 10000: range=0.5527, xrange=0.5266
Loop list of len 100000: range=10.1666, xrange=7.8481
Loop list of len 1000000: range=168.3425, xrange=155.8719
所以无论如何都要使用xrange,但除非您在受限的硬件上,否则不要太担心它。
另一个区别是Python 2实现的xrange()不支持大于C int的数字,所以如果你想使用Python内置的大数字支持来获得一个范围,你必须使用range()。
Python 2.7.3 (default, Jul 13 2012, 22:29:01)
[GCC 4.7.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> range(123456787676676767676676,123456787676676767676679)
[123456787676676767676676L, 123456787676676767676677L, 123456787676676767676678L]
>>> xrange(123456787676676767676676,123456787676676767676679)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
OverflowError: Python int too large to convert to C long
Python 3没有这个问题:
Python 3.2.3 (default, Jul 14 2012, 01:01:48)
[GCC 4.7.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> range(123456787676676767676676,123456787676676767676679)
range(123456787676676767676676, 123456787676676767676679)
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 如何在Ruby中生成a和b之间的随机数?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if