假设我们有两个堆栈,没有其他临时变量。
是否有可能“构造”一个队列数据结构只使用两个堆栈?
假设我们有两个堆栈,没有其他临时变量。
是否有可能“构造”一个队列数据结构只使用两个堆栈?
当前回答
下面是使用ES6语法的javascript语言解决方案。
Stack.js
//stack using array
class Stack {
constructor() {
this.data = [];
}
push(data) {
this.data.push(data);
}
pop() {
return this.data.pop();
}
peek() {
return this.data[this.data.length - 1];
}
size(){
return this.data.length;
}
}
export { Stack };
QueueUsingTwoStacks.js
import { Stack } from "./Stack";
class QueueUsingTwoStacks {
constructor() {
this.stack1 = new Stack();
this.stack2 = new Stack();
}
enqueue(data) {
this.stack1.push(data);
}
dequeue() {
//if both stacks are empty, return undefined
if (this.stack1.size() === 0 && this.stack2.size() === 0)
return undefined;
//if stack2 is empty, pop all elements from stack1 to stack2 till stack1 is empty
if (this.stack2.size() === 0) {
while (this.stack1.size() !== 0) {
this.stack2.push(this.stack1.pop());
}
}
//pop and return the element from stack 2
return this.stack2.pop();
}
}
export { QueueUsingTwoStacks };
用法如下:
index.js
import { StackUsingTwoQueues } from './StackUsingTwoQueues';
let que = new QueueUsingTwoStacks();
que.enqueue("A");
que.enqueue("B");
que.enqueue("C");
console.log(que.dequeue()); //output: "A"
其他回答
您甚至可以只使用一个堆栈模拟一个队列。第二个(临时)堆栈可以通过对insert方法的递归调用的调用堆栈来模拟。
在队列中插入新元素时,原理保持不变:
您需要将元素从一个堆栈转移到另一个临时堆栈,以反转它们的顺序。 然后将要插入的新元素推入临时堆栈 然后将元素转移回原始堆栈 新元素将在堆栈的底部,而最老的元素在顶部(第一个被弹出)
一个Queue类只使用一个Stack,如下所示:
public class SimulatedQueue<E> {
private java.util.Stack<E> stack = new java.util.Stack<E>();
public void insert(E elem) {
if (!stack.empty()) {
E topElem = stack.pop();
insert(elem);
stack.push(topElem);
}
else
stack.push(elem);
}
public E remove() {
return stack.pop();
}
}
虽然你会得到很多与实现两个堆栈的队列相关的帖子: 1. 要么使enQueue进程的开销大大增加 2. 或者通过增加deQueue进程的开销
https://www.geeksforgeeks.org/queue-using-stacks/
我从上面的帖子中发现的一个重要方法是只使用堆栈数据结构和递归调用堆栈来构造队列。
虽然有人可能会说,从字面上看,这仍然是使用两个堆栈,但理想情况下,这只使用一个堆栈数据结构。
下面是问题的解释:
Declare a single stack for enQueuing and deQueing the data and push the data into the stack. while deQueueing have a base condition where the element of the stack is poped when the size of the stack is 1. This will ensure that there is no stack overflow during the deQueue recursion. While deQueueing first pop the data from the top of the stack. Ideally this element will be the element which is present at the top of the stack. Now once this is done, recursively call the deQueue function and then push the element popped above back into the stack.
代码如下所示:
if (s1.isEmpty())
System.out.println("The Queue is empty");
else if (s1.size() == 1)
return s1.pop();
else {
int x = s1.pop();
int result = deQueue();
s1.push(x);
return result;
通过这种方式,您可以使用单个堆栈数据结构和递归调用堆栈创建队列。
public class QueueUsingStacks<T>
{
private LinkedListStack<T> stack1;
private LinkedListStack<T> stack2;
public QueueUsingStacks()
{
stack1=new LinkedListStack<T>();
stack2 = new LinkedListStack<T>();
}
public void Copy(LinkedListStack<T> source,LinkedListStack<T> dest )
{
while(source.Head!=null)
{
dest.Push(source.Head.Data);
source.Head = source.Head.Next;
}
}
public void Enqueue(T entry)
{
stack1.Push(entry);
}
public T Dequeue()
{
T obj;
if (stack2 != null)
{
Copy(stack1, stack2);
obj = stack2.Pop();
Copy(stack2, stack1);
}
else
{
throw new Exception("Stack is empty");
}
return obj;
}
public void Display()
{
stack1.Display();
}
}
对于每一个入队列操作,我们都将其添加到stack1的顶部。每次出队列时,我们都将stack1的内容清空到stack2中,并删除堆栈顶部的元素。出队列的时间复杂度是O(n),因为我们必须将stack1复制到stack2。队列的时间复杂度与常规堆栈相同
您必须从第一个堆栈中取出所有元素来获取底部元素。然后在每次“出队列”操作时将它们都放回第二个堆栈。
// Two stacks s1 Original and s2 as Temp one
private Stack<Integer> s1 = new Stack<Integer>();
private Stack<Integer> s2 = new Stack<Integer>();
/*
* Here we insert the data into the stack and if data all ready exist on
* stack than we copy the entire stack s1 to s2 recursively and push the new
* element data onto s1 and than again recursively call the s2 to pop on s1.
*
* Note here we can use either way ie We can keep pushing on s1 and than
* while popping we can remove the first element from s2 by copying
* recursively the data and removing the first index element.
*/
public void insert( int data )
{
if( s1.size() == 0 )
{
s1.push( data );
}
else
{
while( !s1.isEmpty() )
{
s2.push( s1.pop() );
}
s1.push( data );
while( !s2.isEmpty() )
{
s1.push( s2.pop() );
}
}
}
public void remove()
{
if( s1.isEmpty() )
{
System.out.println( "Empty" );
}
else
{
s1.pop();
}
}