我做了一个函数,它将在字典中查找年龄并显示匹配的名字:

dictionary = {'george' : 16, 'amber' : 19}
search_age = raw_input("Provide age")
for age in dictionary.values():
    if age == search_age:
        name = dictionary[age]
        print name

我知道如何比较和查找年龄,只是不知道如何显示这个人的名字。此外,由于第5行,我得到了一个KeyError。我知道这是不正确的,但我不知道如何让它向后搜索。


当前回答

正如有人提到的,可能有多个键具有相同的值,如下面的my_dict。此外,可能没有匹配的键。

my_dict ={'k1':1,'k2':2, 'k3':1, 'k4':12, 'k5':1, 'k6':1, 'k7':12}

这里有三种找到钥匙的方法,一种用于最后一次敲击,两种用于第一次敲击。

def find_last(search_value:int, d:dict):
    
    return [x for x,y in d.items() if y==search_value].pop()

def find_first1(search_value:int, d:dict):
    return next(filter(lambda x: d[x]==search_value, d.keys()), None)

def find_first2(search_value:int, d:dict):
    return next(x for x,y in  d.items() if y==search_value)

在这些函数中,find_first1比其他函数快一点,如果没有匹配的键,它将返回None。

其他回答

我认为指出哪些方法是最快的,以及在什么情况下是最快的会很有趣:

以下是我在一台2012年的MacBook Pro上进行的一些测试

def method1(dict, search_age):
    for name, age in dict.iteritems():
        if age == search_age:
            return name

def method2(dict, search_age):
    return [name for name,age in dict.iteritems() if age == search_age]

def method3(dict, search_age):
    return dict.keys()[dict.values().index(search_age)]

profile.run()在每个方法上100,000次的结果:

方法1:

>>> profile.run("for i in range(0,100000): method1(dict, 16)")
     200004 function calls in 1.173 seconds

方法2:

>>> profile.run("for i in range(0,100000): method2(dict, 16)")
     200004 function calls in 1.222 seconds

方法3:

>>> profile.run("for i in range(0,100000): method3(dict, 16)")
     400004 function calls in 2.125 seconds

所以这表明,对于一个小字典,方法1是最快的。这很可能是因为它返回第一个匹配,而不是像方法2那样返回所有匹配(参见下面的注释)。


有趣的是,在我有2700个条目的字典上执行相同的测试,我得到了完全不同的结果(这次运行了10,000次):

方法1:

>>> profile.run("for i in range(0,10000): method1(UIC_CRS,'7088380')")
     20004 function calls in 2.928 seconds

方法2:

>>> profile.run("for i in range(0,10000): method2(UIC_CRS,'7088380')")
     20004 function calls in 3.872 seconds

方法3:

>>> profile.run("for i in range(0,10000): method3(UIC_CRS,'7088380')")
     40004 function calls in 1.176 seconds

这里,方法3要快得多。这表明字典的大小会影响你选择的方法。

注:

方法2返回所有名称的列表,而方法1和3只返回第一个匹配项。 我没有考虑内存使用情况。我不确定方法3是否创建了2个额外的列表(keys()和values())并将它们存储在内存中。

通过“查找”值来查找列表中的键是不容易的。但是,如果知道值,遍历键,就可以按元素在字典中查找值。如果D[element](其中D是一个字典对象)等于你要查找的键,你可以执行一些代码。

D = {'Ali': 20, 'Marina': 12, 'George':16}
age = int(input('enter age:\t'))  
for element in D.keys():
    if D[element] == age:
        print(element)
get_key = lambda v, d: next(k for k in d if d[k] is v)

以下是我的看法。这对于显示多个结果很有好处,以防您需要一个结果。所以我也添加了这个列表

myList = {'george':16,'amber':19, 'rachel':19, 
           'david':15 }                         #Setting the dictionary
result=[]                                       #Making ready of the result list
search_age = int(input('Enter age '))

for keywords in myList.keys():
    if myList[keywords] ==search_age:
    result.append(keywords)                    #This part, we are making list of results

for res in result:                             #We are now printing the results
    print(res)

就是这样……

已经回答了,但由于一些人提到反转字典,下面是如何在一行中做到这一点(假设1:1映射)和一些各种性能数据:

python 2.6:

reversedict = dict([(value, key) for key, value in mydict.iteritems()])

+ 2.7:

reversedict = {value:key for key, value in mydict.iteritems()}

如果你认为不是1:1,你仍然可以用几行创建一个合理的反向映射:

reversedict = defaultdict(list)
[reversedict[value].append(key) for key, value in mydict.iteritems()]

这有多慢:比简单的搜索慢,但远没有你想象的那么慢——在一个“直接”100000条目的字典上,“快速”搜索(即查找键前面的值)比反转整个字典快10倍左右,而“缓慢”搜索(接近结尾)大约快4-5倍。所以最多查找10次,就能收回成本。

第二个版本(每个项目都有列表)大约是简单版本的2.5倍。

largedict = dict((x,x) for x in range(100000))

# Should be slow, has to search 90000 entries before it finds it
In [26]: %timeit largedict.keys()[largedict.values().index(90000)]
100 loops, best of 3: 4.81 ms per loop

# Should be fast, has to only search 9 entries to find it. 
In [27]: %timeit largedict.keys()[largedict.values().index(9)]
100 loops, best of 3: 2.94 ms per loop

# How about using iterkeys() instead of keys()?
# These are faster, because you don't have to create the entire keys array.
# You DO have to create the entire values array - more on that later.

In [31]: %timeit islice(largedict.iterkeys(), largedict.values().index(90000))
100 loops, best of 3: 3.38 ms per loop

In [32]: %timeit islice(largedict.iterkeys(), largedict.values().index(9))
1000 loops, best of 3: 1.48 ms per loop

In [24]: %timeit reversedict = dict([(value, key) for key, value in largedict.iteritems()])
10 loops, best of 3: 22.9 ms per loop

In [23]: %%timeit
....: reversedict = defaultdict(list)
....: [reversedict[value].append(key) for key, value in largedict.iteritems()]
....:
10 loops, best of 3: 53.6 ms per loop

过滤器也有一些有趣的结果。理论上,filter应该更快,因为我们可以使用itervalues(),而且可能不需要创建/遍历整个值列表。在实践中,结果是……奇怪的……

In [72]: %%timeit
....: myf = ifilter(lambda x: x[1] == 90000, largedict.iteritems())
....: myf.next()[0]
....:
100 loops, best of 3: 15.1 ms per loop

In [73]: %%timeit
....: myf = ifilter(lambda x: x[1] == 9, largedict.iteritems())
....: myf.next()[0]
....:
100000 loops, best of 3: 2.36 us per loop

因此,对于小偏移量,它比以前的任何版本都要快得多(2.36 *u*S vs.以前的情况下至少1.48 *m*S)。然而,对于接近列表末尾的大偏移量,它会显着变慢(15.1ms vs.相同的1.48mS)。以我之见,在低端产品上节省下来的少量成本,在高端产品上的成本是不值的。