我的面试问题是这样的:

给定一个包含40亿个整数的输入文件,提供一种算法来生成一个文件中不包含的整数。假设您有1gb内存。如果你只有10mb的内存,你会怎么做。

我的分析:

文件大小为4×109×4 bytes = 16gb。

我们可以进行外部排序,从而知道整数的范围。

我的问题是,在已排序的大整数集中检测缺失整数的最佳方法是什么?

我的理解(看完所有答案后):

假设我们讨论的是32位整数,有232 = 4*109个不同的整数。

情况1:我们有1gb = 1 * 109 * 8位= 80亿位内存。

解决方案:

如果我们用一位表示一个不同的整数,这就足够了。我们不需要排序。

实现:

int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
    Scanner in = new Scanner(new FileReader("a.txt"));
    while(in.hasNextInt()){
        int n = in.nextInt();
        bitfield[n/radix] |= (1 << (n%radix));
    }

    for(int i = 0; i< bitfield.lenght; i++){
        for(int j =0; j<radix; j++){
            if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
        }
    }
}

情形二:10mb内存= 10 * 106 * 8bits = 8000万bits

Solution: For all possible 16-bit prefixes, there are 216 number of integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket. Build the counter of each bucket through the first pass through the file. Scan the buckets, find the first one who has less than 65536 hit. Build new buckets whose high 16-bit prefixes are we found in step2 through second pass of the file Scan the buckets built in step3, find the first bucket which doesnt have a hit. The code is very similar to above one.

结论: 我们通过增加文件传递来减少内存。


为那些迟到的人澄清一下:这个问题,正如所问的,并不是说有一个整数没有包含在文件中——至少大多数人不是这么理解的。不过,评论线程中的许多评论都是关于任务的变化。不幸的是,把它引入评论线程的评论后来被它的作者删除了,所以现在看起来它的孤儿回复只是误解了一切。这很让人困惑,抱歉。


当前回答

检查输入文件的大小,然后输出任何过大而无法用该大小的文件表示的数字。这似乎是一个廉价的技巧,但它是一个创造性的解决面试问题的方法,它巧妙地避开了记忆问题,从技术上讲,它是O(n)。

void maxNum(ulong filesize)
{
    ulong bitcount = filesize * 8; //number of bits in file

    for (ulong i = 0; i < bitcount; i++)
    {
        Console.Write(9);
    }
}

应该打印10位计数- 1,这将永远大于2位计数。从技术上讲,你必须打败的数字是2 bitcount -(4 * 109 - 1),因为你知道文件中还有(40亿- 1)个其他整数,即使使用完美的压缩,它们也会占用至少1位。

其他回答

这可以在非常小的空间内使用一种变体的二分搜索来解决。

从允许的数字范围0到4294967295开始。 计算中点。 遍历文件,计算有多少数字等于、小于或高于中点值。 如果没有相等的数字,你就完了。中点数就是答案。 否则,选择数字最少的范围,并使用这个新范围重复第2步。

这将需要对文件进行多达32次线性扫描,但它只使用几个字节的内存来存储范围和计数。

这本质上与Henning的解决方案相同,除了它使用两个箱子而不是16k。

If they are 32-bit integers (likely from the choice of ~4 billion numbers close to 232), your list of 4 billion numbers will take up at most 93% of the possible integers (4 * 109 / (232) ). So if you create a bit-array of 232 bits with each bit initialized to zero (which will take up 229 bytes ~ 500 MB of RAM; remember a byte = 23 bits = 8 bits), read through your integer list and for each int set the corresponding bit-array element from 0 to 1; and then read through your bit-array and return the first bit that's still 0.

In the case where you have less RAM (~10 MB), this solution needs to be slightly modified. 10 MB ~ 83886080 bits is still enough to do a bit-array for all numbers between 0 and 83886079. So you could read through your list of ints; and only record #s that are between 0 and 83886079 in your bit array. If the numbers are randomly distributed; with overwhelming probability (it differs by 100% by about 10-2592069) you will find a missing int). In fact, if you only choose numbers 1 to 2048 (with only 256 bytes of RAM) you'd still find a missing number an overwhelming percentage (99.99999999999999999999999999999999999999999999999999999999999995%) of the time.

但我们假设不是有40亿个数字;你有232 - 1这样的数字和不到10mb的RAM;所以任何小范围的整数都只有很小的可能性不包含这个数字。

如果保证列表中的每个int都是唯一的,那么可以将这些数字相加,并减去一个#,再减去完整的和(½)(232)(232 - 1)= 9223372034707292160,以找到缺少的int。但是,如果出现了两次int,则此方法将失败。

However, you can always divide and conquer. A naive method, would be to read through the array and count the number of numbers that are in the first half (0 to 231-1) and second half (231, 232). Then pick the range with fewer numbers and repeat dividing that range in half. (Say if there were two less number in (231, 232) then your next search would count the numbers in the range (231, 3*230-1), (3*230, 232). Keep repeating until you find a range with zero numbers and you have your answer. Should take O(lg N) ~ 32 reads through the array.

这种方法效率很低。我们在每一步中只使用两个整数(或者大约8字节的RAM和一个4字节(32位)整数)。更好的方法是将其划分为sqrt(232) = 216 = 65536个箱子,每个箱子中有65536个数字。每个bin需要4个字节来存储它的计数,因此需要218字节= 256 kB。因此,bin 0为(0 ~ 65535=216-1),bin 1为(216=65536 ~ 2*216-1=131071),bin 2为(2*216=131072 ~ 3*216-1=196607)。在python中,你会有这样的代码:

import numpy as np
nums_in_bin = np.zeros(65536, dtype=np.uint32)
for N in four_billion_int_array:
    nums_in_bin[N // 65536] += 1
for bin_num, bin_count in enumerate(nums_in_bin):
    if bin_count < 65536:
        break # we have found an incomplete bin with missing ints (bin_num)

通读~ 40亿整数列表;然后计算216个容器中每个容器中有多少int,并找到一个不包含65536个数字的incomplete_bin。然后你再读一遍40亿的整数列表;但这次只注意整数在这个范围内;当你找到他们的时候,你会有点抓狂。

del nums_in_bin # allow gc to free old 256kB array
from bitarray import bitarray
my_bit_array = bitarray(65536) # 32 kB
my_bit_array.setall(0)
for N in four_billion_int_array:
    if N // 65536 == bin_num:
        my_bit_array[N % 65536] = 1
for i, bit in enumerate(my_bit_array):
    if not bit:
        print bin_num*65536 + i
        break

正如Ryan所说,基本上,对文件进行排序,然后遍历整数,当一个值被跳过时,你就有了:)

EDIT at downvotes: OP提到文件可以排序,所以这是一个有效的方法。

出于某种原因,当我读到这个问题时,我想到了对角化。假设是任意大的整数。

Read the first number. Left-pad it with zero bits until you have 4 billion bits. If the first (high-order) bit is 0, output 1; else output 0. (You don't really have to left-pad: you just output a 1 if there are not enough bits in the number.) Do the same with the second number, except use its second bit. Continue through the file in this way. You will output a 4-billion bit number one bit at a time, and that number will not be the same as any in the file. Proof: it were the same as the nth number, then they would agree on the nth bit, but they don't by construction.

这是个陷阱问题,除非引用不当。只需要通读文件一次,得到最大整数n,并返回n+1。

当然,您需要一个备份计划,以防n+1导致整数溢出。