我的面试问题是这样的:

给定一个包含40亿个整数的输入文件,提供一种算法来生成一个文件中不包含的整数。假设您有1gb内存。如果你只有10mb的内存,你会怎么做。

我的分析:

文件大小为4×109×4 bytes = 16gb。

我们可以进行外部排序,从而知道整数的范围。

我的问题是,在已排序的大整数集中检测缺失整数的最佳方法是什么?

我的理解(看完所有答案后):

假设我们讨论的是32位整数,有232 = 4*109个不同的整数。

情况1:我们有1gb = 1 * 109 * 8位= 80亿位内存。

解决方案:

如果我们用一位表示一个不同的整数,这就足够了。我们不需要排序。

实现:

int radix = 8;
byte[] bitfield = new byte[0xffffffff/radix];
void F() throws FileNotFoundException{
    Scanner in = new Scanner(new FileReader("a.txt"));
    while(in.hasNextInt()){
        int n = in.nextInt();
        bitfield[n/radix] |= (1 << (n%radix));
    }

    for(int i = 0; i< bitfield.lenght; i++){
        for(int j =0; j<radix; j++){
            if( (bitfield[i] & (1<<j)) == 0) System.out.print(i*radix+j);
        }
    }
}

情形二:10mb内存= 10 * 106 * 8bits = 8000万bits

Solution: For all possible 16-bit prefixes, there are 216 number of integers = 65536, we need 216 * 4 * 8 = 2 million bits. We need build 65536 buckets. For each bucket, we need 4 bytes holding all possibilities because the worst case is all the 4 billion integers belong to the same bucket. Build the counter of each bucket through the first pass through the file. Scan the buckets, find the first one who has less than 65536 hit. Build new buckets whose high 16-bit prefixes are we found in step2 through second pass of the file Scan the buckets built in step3, find the first bucket which doesnt have a hit. The code is very similar to above one.

结论: 我们通过增加文件传递来减少内存。


为那些迟到的人澄清一下:这个问题,正如所问的,并不是说有一个整数没有包含在文件中——至少大多数人不是这么理解的。不过,评论线程中的许多评论都是关于任务的变化。不幸的是,把它引入评论线程的评论后来被它的作者删除了,所以现在看起来它的孤儿回复只是误解了一切。这很让人困惑,抱歉。


当前回答

统计信息算法解决这个问题的次数比确定性方法少。

如果允许使用非常大的整数,则可以生成一个在O(1)时间内可能唯一的数字。像GUID这样的伪随机128位整数只会与集合中现有的40亿个整数中的一个发生碰撞,这种情况的概率不到640亿亿亿分之一。

If integers are limited to 32 bits then one can generate a number that is likely to be unique in a single pass using much less than 10 MB. The odds that a pseudo-random 32-bit integer will collide with one of the 4 billion existing integers is about 93% (4e9 / 2^32). The odds that 1000 pseudo-random integers will all collide is less than one in 12,000 billion billion billion (odds-of-one-collision ^ 1000). So if a program maintains a data structure containing 1000 pseudo-random candidates and iterates through the known integers, eliminating matches from the candidates, it is all but certain to find at least one integer that is not in the file.

其他回答

一些消除

一种方法是消除比特,但这实际上可能不会产生结果(很可能不会)。Psuedocode:

long val = 0xFFFFFFFFFFFFFFFF; // (all bits set)
foreach long fileVal in file
{
    val = val & ~fileVal;
    if (val == 0) error;
}

位计数

跟踪比特数;用最少的比特来产生一个值。同样,这也不能保证生成正确的值。

范围的逻辑

跟踪列表的顺序范围(按开始顺序)。范围由结构定义:

struct Range
{
  long Start, End; // Inclusive.
}
Range startRange = new Range { Start = 0x0, End = 0xFFFFFFFFFFFFFFFF };

遍历文件中的每个值,并尝试将其从当前范围中删除。这个方法没有内存保证,但是它应该做得很好。

正如Ryan所说,基本上,对文件进行排序,然后遍历整数,当一个值被跳过时,你就有了:)

EDIT at downvotes: OP提到文件可以排序,所以这是一个有效的方法。

Surely, and speaking with limited experience (just started learning java at Uni) you can run trhough one set (barrel) of int, and if number not found dispose of barrel. This would both free up space and run a check through each unit of data. If what you are looking for is found add it to a count variable. Would take a long time but, if you made multiple variables for each section and run the check count through each variable and ensure they are exiting/disposing at the same time, the variable storage should not increase? And will speed up the check process. Just a thought.

出于某种原因,当我读到这个问题时,我想到了对角化。假设是任意大的整数。

Read the first number. Left-pad it with zero bits until you have 4 billion bits. If the first (high-order) bit is 0, output 1; else output 0. (You don't really have to left-pad: you just output a 1 if there are not enough bits in the number.) Do the same with the second number, except use its second bit. Continue through the file in this way. You will output a 4-billion bit number one bit at a time, and that number will not be the same as any in the file. Proof: it were the same as the nth number, then they would agree on the nth bit, but they don't by construction.

您可以使用位标志来标记一个整数是否存在。

遍历整个文件后,扫描每个位以确定数字是否存在。

假设每个整数是32位,如果进行了位标记,它们将方便地放入1gb RAM中。