NumPy提出了一种通过np.argmax获取数组最大值索引的方法。

我想要一个类似的东西,但返回N个最大值的索引。

例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。


当前回答

下面是查看最大元素及其位置的一个非常简单的方法。这里轴是定义域;对于2D情况,axis = 0表示列的最大数量,axis = 1表示行的最大数量。对于高维,这取决于你。

M = np.random.random((3, 4))
print(M)
print(M.max(axis=1), M.argmax(axis=1))

其他回答

方法np。Argpartition只返回k个最大的索引,执行局部排序,比np快。当数组相当大时,Argsort(执行完全排序)。但是返回的索引不是升序或降序。让我们举个例子:

我们可以看到如果你想要一个严格的升序前k个指标,np。Argpartition不会返回你想要的。

除了在np后手动进行排序。argpartition,我的解决方案是使用PyTorch, torch。topk,一个神经网络构建工具,提供numpy类api,同时支持CPU和GPU。它和NumPy的MKL一样快,如果你需要大型矩阵/向量计算,它还提供了GPU的提升。

严格的上升/下降上k指数代码将是:

注意那个火炬。topk接受一个torch张量,并返回torch. tensor类型的topk值和topk索引。与np、torch类似。Topk还接受轴参数,以便处理多维数组/张量。

我能想到的最简单的是:

>>> import numpy as np
>>> arr = np.array([1, 3, 2, 4, 5])
>>> arr.argsort()[-3:][::-1]
array([4, 3, 1])

这涉及到一个完整的数组。我想知道numpy是否提供了一种内置的方法来进行部分排序;到目前为止我还没有找到。

如果这个解决方案太慢(特别是对于小n),那么可能值得考虑用Cython编写一些东西。

您可以简单地使用字典来查找numpy数组中的前k个值和下标。 例如,如果你想找到前2个最大值和索引

import numpy as np
nums = np.array([0.2, 0.3, 0.25, 0.15, 0.1])


def TopK(x, k):
    a = dict([(i, j) for i, j in enumerate(x)])
    sorted_a = dict(sorted(a.items(), key = lambda kv:kv[1], reverse=True))
    indices = list(sorted_a.keys())[:k]
    values = list(sorted_a.values())[:k]
    return (indices, values)

print(f"Indices: {TopK(nums, k = 2)[0]}")
print(f"Values: {TopK(nums, k = 2)[1]}")


Indices: [1, 2]
Values: [0.3, 0.25]

这里有一个更复杂的方法,如果第n个值有联系,则增加n:

>>>> def get_top_n_plus_ties(arr,n):
>>>>     sorted_args = np.argsort(-arr)
>>>>     thresh = arr[sorted_args[n]]
>>>>     n_ = np.sum(arr >= thresh)
>>>>     return sorted_args[:n_]
>>>> get_top_n_plus_ties(np.array([2,9,8,3,0,2,8,3,1,9,5]),3)
array([1, 9, 2, 6])

这将比完整排序更快,这取决于原始数组的大小和选择的大小:

>>> A = np.random.randint(0,10,10)
>>> A
array([5, 1, 5, 5, 2, 3, 2, 4, 1, 0])
>>> B = np.zeros(3, int)
>>> for i in xrange(3):
...     idx = np.argmax(A)
...     B[i]=idx; A[idx]=0 #something smaller than A.min()
...     
>>> B
array([0, 2, 3])

当然,这涉及到对原始数组的篡改。你可以修复(如果需要)通过复制或替换回原始值. ...对你的用例来说,哪个更便宜。