NumPy提出了一种通过np.argmax获取数组最大值索引的方法。

我想要一个类似的东西,但返回N个最大值的索引。

例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。


当前回答

下面是查看最大元素及其位置的一个非常简单的方法。这里轴是定义域;对于2D情况,axis = 0表示列的最大数量,axis = 1表示行的最大数量。对于高维,这取决于你。

M = np.random.random((3, 4))
print(M)
print(M.max(axis=1), M.argmax(axis=1))

其他回答

Use:

>>> import heapq
>>> import numpy
>>> a = numpy.array([1, 3, 2, 4, 5])
>>> heapq.nlargest(3, range(len(a)), a.take)
[4, 3, 1]

对于常规的Python列表:

>>> a = [1, 3, 2, 4, 5]
>>> heapq.nlargest(3, range(len(a)), a.__getitem__)
[4, 3, 1]

如果使用Python 2,请使用xrange而不是range。

来源:堆队列算法

简单的:

idx = (-arr).argsort()[:n]

其中n为最大值的个数。

如果你正在处理nan和/或理解np有问题。试试pandas.DataFrame.sort_values。

import numpy as np
import pandas as pd    

a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])

df = pd.DataFrame(a, columns=['array'])
max_values = df['array'].sort_values(ascending=False, na_position='last')
ind = max_values[0:3].index.to_list()

这个例子给出了3个最大的非nan值的索引。可能效率很低,但易于阅读和定制。

如果你碰巧在使用一个多维数组,那么你需要平展和解开索引:

def largest_indices(ary, n):
    """Returns the n largest indices from a numpy array."""
    flat = ary.flatten()
    indices = np.argpartition(flat, -n)[-n:]
    indices = indices[np.argsort(-flat[indices])]
    return np.unravel_index(indices, ary.shape)

例如:

>>> xs = np.sin(np.arange(9)).reshape((3, 3))
>>> xs
array([[ 0.        ,  0.84147098,  0.90929743],
       [ 0.14112001, -0.7568025 , -0.95892427],
       [-0.2794155 ,  0.6569866 ,  0.98935825]])
>>> largest_indices(xs, 3)
(array([2, 0, 0]), array([2, 2, 1]))
>>> xs[largest_indices(xs, 3)]
array([ 0.98935825,  0.90929743,  0.84147098])

这将比完整排序更快,这取决于原始数组的大小和选择的大小:

>>> A = np.random.randint(0,10,10)
>>> A
array([5, 1, 5, 5, 2, 3, 2, 4, 1, 0])
>>> B = np.zeros(3, int)
>>> for i in xrange(3):
...     idx = np.argmax(A)
...     B[i]=idx; A[idx]=0 #something smaller than A.min()
...     
>>> B
array([0, 2, 3])

当然,这涉及到对原始数组的篡改。你可以修复(如果需要)通过复制或替换回原始值. ...对你的用例来说,哪个更便宜。