如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
我不喜欢添加另一个答案,但谷歌地图API v.3具有球形几何(以及更多)。在将你的WGS84转换为十进制度后,你可以这样做:
<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry" type="text/javascript"></script>
distance = google.maps.geometry.spherical.computeDistanceBetween(
new google.maps.LatLng(fromLat, fromLng),
new google.maps.LatLng(toLat, toLng));
关于谷歌的计算有多精确,甚至使用了什么模型都没有任何消息(尽管它说的是“球面”而不是“大地水准面”。顺便说一下,“直线”距离显然不同于一个人在地球表面旅行的距离,而这似乎是每个人都在假设的。
其他回答
在其他答案中,r中的实现是缺失的。
用地质圈包中的distm函数计算两点之间的距离非常简单:
distm(p1, p2, fun = distHaversine)
地点:
p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid
由于地球不是完美的球形,所以椭球体的文森提公式可能是计算距离的最佳方法。因此,在地质圈包中,您可以使用:
distm(p1, p2, fun = distVincentyEllipsoid)
当然,你不一定要使用geosphere包,你也可以用一个函数来计算以R为基底的距离:
hav.dist <- function(long1, lat1, long2, lat2) {
R <- 6371
diff.long <- (long2 - long1)
diff.lat <- (lat2 - lat1)
a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
b <- 2 * asin(pmin(1, sqrt(a)))
d = R * b
return(d)
}
这里有一个用PHP http://www.geodatasource.com/developers/php计算距离的好例子:
function distance($lat1, $lon1, $lat2, $lon2, $unit) {
$theta = $lon1 - $lon2;
$dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) + cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
$dist = acos($dist);
$dist = rad2deg($dist);
$miles = $dist * 60 * 1.1515;
$unit = strtoupper($unit);
if ($unit == "K") {
return ($miles * 1.609344);
} else if ($unit == "N") {
return ($miles * 0.8684);
} else {
return $miles;
}
}
仅限飞镖:
import 'dart:math' show cos, sqrt, asin;
double calculateDistance(LatLng l1, LatLng l2) {
const p = 0.017453292519943295;
final a = 0.5 -
cos((l2.latitude - l1.latitude) * p) / 2 +
cos(l1.latitude * p) *
cos(l2.latitude * p) *
(1 - cos((l2.longitude - l1.longitude) * p)) /
2;
return 12742 * asin(sqrt(a));
}
//JAVA
public Double getDistanceBetweenTwoPoints(Double latitude1, Double longitude1, Double latitude2, Double longitude2) {
final int RADIUS_EARTH = 6371;
double dLat = getRad(latitude2 - latitude1);
double dLong = getRad(longitude2 - longitude1);
double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(getRad(latitude1)) * Math.cos(getRad(latitude2)) * Math.sin(dLong / 2) * Math.sin(dLong / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return (RADIUS_EARTH * c) * 1000;
}
private Double getRad(Double x) {
return x * Math.PI / 180;
}
正如指出的那样,精确的计算应该考虑到地球不是一个完美的球体。以下是这里提供的各种算法的一些比较:
geoDistance(50,5,58,3)
Haversine: 899 km
Maymenn: 833 km
Keerthana: 897 km
google.maps.geometry.spherical.computeDistanceBetween(): 900 km
geoDistance(50,5,-58,-3)
Haversine: 12030 km
Maymenn: 11135 km
Keerthana: 10310 km
google.maps.geometry.spherical.computeDistanceBetween(): 12044 km
geoDistance(.05,.005,.058,.003)
Haversine: 0.9169 km
Maymenn: 0.851723 km
Keerthana: 0.917964 km
google.maps.geometry.spherical.computeDistanceBetween(): 0.917964 km
geoDistance(.05,80,.058,80.3)
Haversine: 33.37 km
Maymenn: 33.34 km
Keerthana: 33.40767 km
google.maps.geometry.spherical.computeDistanceBetween(): 33.40770 km
在小范围内,Keerthana的算法似乎与谷歌Maps的算法一致。谷歌Maps似乎没有遵循任何简单的算法,这表明它可能是这里最准确的方法。
不管怎样,这里是Keerthana算法的Javascript实现:
function geoDistance(lat1, lng1, lat2, lng2){
const a = 6378.137; // equitorial radius in km
const b = 6356.752; // polar radius in km
var sq = x => (x*x);
var sqr = x => Math.sqrt(x);
var cos = x => Math.cos(x);
var sin = x => Math.sin(x);
var radius = lat => sqr((sq(a*a*cos(lat))+sq(b*b*sin(lat)))/(sq(a*cos(lat))+sq(b*sin(lat))));
lat1 = lat1 * Math.PI / 180;
lng1 = lng1 * Math.PI / 180;
lat2 = lat2 * Math.PI / 180;
lng2 = lng2 * Math.PI / 180;
var R1 = radius(lat1);
var x1 = R1*cos(lat1)*cos(lng1);
var y1 = R1*cos(lat1)*sin(lng1);
var z1 = R1*sin(lat1);
var R2 = radius(lat2);
var x2 = R2*cos(lat2)*cos(lng2);
var y2 = R2*cos(lat2)*sin(lng2);
var z2 = R2*sin(lat2);
return sqr(sq(x1-x2)+sq(y1-y2)+sq(z1-z2));
}