如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

FSharp版本,使用里程:

let radialDistanceHaversine location1 location2 : float = 
                let degreeToRadian degrees = degrees * System.Math.PI / 180.0
                let earthRadius = 3959.0
                let deltaLat = location2.Latitude - location1.Latitude |> degreeToRadian
                let deltaLong = location2.Longitude - location1.Longitude |> degreeToRadian
                let a =
                    (deltaLat / 2.0 |> sin) ** 2.0
                    + (location1.Latitude |> degreeToRadian |> cos)
                    * (location2.Latitude |> degreeToRadian |> cos)
                    * (deltaLong / 2.0 |> sin) ** 2.0
                atan2 (a |> sqrt) (1.0 - a |> sqrt)
                * 2.0
                * earthRadius

其他回答

在提供的代码中有一些错误,我在下面修复了它。

以上所有答案都假定地球是一个球体。然而,更精确的近似是扁球体。

a= 6378.137#equitorial radius in km
b= 6356.752#polar radius in km

def Distance(lat1, lons1, lat2, lons2):
    lat1=math.radians(lat1)
    lons1=math.radians(lons1)
    R1=(((((a**2)*math.cos(lat1))**2)+(((b**2)*math.sin(lat1))**2))/((a*math.cos(lat1))**2+(b*math.sin(lat1))**2))**0.5 #radius of earth at lat1
    x1=R1*math.cos(lat1)*math.cos(lons1)
    y1=R1*math.cos(lat1)*math.sin(lons1)
    z1=R1*math.sin(lat1)

    lat2=math.radians(lat2)
    lons2=math.radians(lons2)
    R2=(((((a**2)*math.cos(lat2))**2)+(((b**2)*math.sin(lat2))**2))/((a*math.cos(lat2))**2+(b*math.sin(lat2))**2))**0.5 #radius of earth at lat2
    x2=R2*math.cos(lat2)*math.cos(lons2)
    y2=R2*math.cos(lat2)*math.sin(lons2)
    z2=R2*math.sin(lat2)
    
    return ((x1-x2)**2+(y1-y2)**2+(z1-z2)**2)**0.5

我已经创建了这个小Javascript LatLng对象,可能对某人有用。

var latLng1 = new LatLng(5, 3);
var latLng2 = new LatLng(6, 7);
var distance = latLng1.distanceTo(latLng2); 

代码:

/**
 * latLng point
 * @param {Number} lat
 * @param {Number} lng
 * @returns {LatLng}
 * @constructor
 */
function LatLng(lat,lng) {
    this.lat = parseFloat(lat);
    this.lng = parseFloat(lng);

    this.__cache = {};
}

LatLng.prototype = {
    toString: function() {
        return [this.lat, this.lng].join(",");
    },

    /**
     * calculate distance in km to another latLng, with caching
     * @param {LatLng} latLng
     * @returns {Number} distance in km
     */
    distanceTo: function(latLng) {
        var cacheKey = latLng.toString();
        if(cacheKey in this.__cache) {
            return this.__cache[cacheKey];
        }

        // the fastest way to calculate the distance, according to this jsperf test;
        // http://jsperf.com/haversine-salvador/8
        // http://stackoverflow.com/questions/27928
        var deg2rad = 0.017453292519943295; // === Math.PI / 180
        var lat1 = this.lat * deg2rad;
        var lng1 = this.lng * deg2rad;
        var lat2 = latLng.lat * deg2rad;
        var lng2 = latLng.lng * deg2rad;
        var a = (
            (1 - Math.cos(lat2 - lat1)) +
            (1 - Math.cos(lng2 - lng1)) * Math.cos(lat1) * Math.cos(lat2)
            ) / 2;
        var distance = 12742 * Math.asin(Math.sqrt(a)); // Diameter of the earth in km (2 * 6371)

        // cache the distance
        this.__cache[cacheKey] = distance;

        return distance;
    }
};

这是一个简单的PHP函数,它将给出一个非常合理的近似值(误差小于+/-1%)。

<?php
function distance($lat1, $lon1, $lat2, $lon2) {

    $pi80 = M_PI / 180;
    $lat1 *= $pi80;
    $lon1 *= $pi80;
    $lat2 *= $pi80;
    $lon2 *= $pi80;

    $r = 6372.797; // mean radius of Earth in km
    $dlat = $lat2 - $lat1;
    $dlon = $lon2 - $lon1;
    $a = sin($dlat / 2) * sin($dlat / 2) + cos($lat1) * cos($lat2) * sin($dlon / 2) * sin($dlon / 2);
    $c = 2 * atan2(sqrt($a), sqrt(1 - $a));
    $km = $r * $c;

    //echo '<br/>'.$km;
    return $km;
}
?>

如前所述;地球不是一个球体。它就像马克·麦奎尔决定用来练习的一个很旧很旧的棒球——到处都是凹痕和凸起。简单的计算(像这样)把它当作一个球体。

不同的方法或多或少的精确取决于你在这个不规则的卵形上的位置以及你的点之间的距离(它们越近,绝对误差范围就越小)。你的期望越精确,计算就越复杂。

更多信息:维基百科地理距离

PIP安装haversine

Python实现

原产地是美国毗连的中心。

from haversine import haversine, Unit
origin = (39.50, 98.35)
paris = (48.8567, 2.3508)
haversine(origin, paris, unit=Unit.MILES)

要得到以千米为单位的答案,只需设置unit= unit。千米(这是默认值)。

下面是Erlang实现

lat_lng({Lat1, Lon1}=_Point1, {Lat2, Lon2}=_Point2) ->
  P = math:pi() / 180,
  R = 6371, % Radius of Earth in KM
  A = 0.5 - math:cos((Lat2 - Lat1) * P) / 2 +
    math:cos(Lat1 * P) * math:cos(Lat2 * P) * (1 - math:cos((Lon2 - Lon1) * P))/2,
  R * 2 * math:asin(math:sqrt(A)).