我需要一个函数,它接受一个列表并输出True,如果输入列表中的所有元素使用标准相等运算符计算彼此相等,否则输出False。
我觉得最好是遍历列表,比较相邻的元素,然后与所有结果布尔值。但我不知道最python的方法是什么。
我需要一个函数,它接受一个列表并输出True,如果输入列表中的所有元素使用标准相等运算符计算彼此相等,否则输出False。
我觉得最好是遍历列表,比较相邻的元素,然后与所有结果布尔值。但我不知道最python的方法是什么。
当前回答
使用itertools的更多版本。groupby,我发现它比原来的更清晰(下面有更多关于它的信息):
def all_equal(iterable):
g = groupby(iterable)
return not any(g) or not any(g)
def all_equal(iterable):
g = groupby(iterable)
next(g, None)
return not next(g, False)
def all_equal(iterable):
g = groupby(iterable)
return not next(g, False) or not next(g, False)
以下是来自Itertools Recipes的原始版本:
def all_equal(iterable):
g = groupby(iterable)
return next(g, True) and not next(g, False)
注意,下一个(g, True)总是True(它不是一个非空元组就是True)。这意味着它的值不重要。它的执行纯粹是为了推进groupby迭代器。但是在返回表达式中包含它会导致读者认为它的值在那里被使用。因为它没有,我发现这是误导和不必要的复杂。我上面的第二个版本将next(g, True)视为它的实际用途,作为一个我们不关心其值的语句。
我的第三个版本走了一个不同的方向,并使用了第一个next的值(g, False)。如果根本没有第一个组(即,如果给定的可迭代对象为“空”),则该解决方案立即返回结果,甚至不检查是否有第二个组。
我的第一个解决方案基本上和第三个一样,只是使用任何一个。两种解决方案都读作“所有元素都是相等的……”没有第一组,也没有第二组。”
基准测试结果(虽然速度并不是我在这里的重点,但清晰才是重点,在实践中,如果有许多相等的值,大多数时间可能由组自己花费,减少了这些差异的影响):
Python 3.10.4 on my Windows laptop:
iterable = ()
914 ns 914 ns 916 ns use_first_any
917 ns 925 ns 925 ns use_first_next
1074 ns 1075 ns 1075 ns next_as_statement
1081 ns 1083 ns 1084 ns original
iterable = (1,)
1290 ns 1290 ns 1291 ns next_as_statement
1303 ns 1307 ns 1307 ns use_first_next
1306 ns 1307 ns 1309 ns use_first_any
1318 ns 1319 ns 1320 ns original
iterable = (1, 2)
1463 ns 1464 ns 1467 ns use_first_any
1463 ns 1463 ns 1467 ns next_as_statement
1477 ns 1479 ns 1481 ns use_first_next
1487 ns 1489 ns 1492 ns original
Python 3.10.4 on a Debian Google Compute Engine instance:
iterable = ()
234 ns 234 ns 234 ns use_first_any
234 ns 235 ns 235 ns use_first_next
264 ns 264 ns 264 ns next_as_statement
265 ns 265 ns 265 ns original
iterable = (1,)
308 ns 308 ns 308 ns next_as_statement
315 ns 315 ns 315 ns original
316 ns 316 ns 317 ns use_first_any
317 ns 317 ns 317 ns use_first_next
iterable = (1, 2)
361 ns 361 ns 361 ns next_as_statement
367 ns 367 ns 367 ns original
384 ns 385 ns 385 ns use_first_next
386 ns 387 ns 387 ns use_first_any
基准测试代码:
from timeit import timeit
from random import shuffle
from bisect import insort
from itertools import groupby
def original(iterable):
g = groupby(iterable)
return next(g, True) and not next(g, False)
def use_first_any(iterable):
g = groupby(iterable)
return not any(g) or not any(g)
def next_as_statement(iterable):
g = groupby(iterable)
next(g, None)
return not next(g, False)
def use_first_next(iterable):
g = groupby(iterable)
return not next(g, False) or not next(g, False)
funcs = [original, use_first_any, next_as_statement, use_first_next]
for iterable in (), (1,), (1, 2):
print(f'{iterable = }')
times = {func: [] for func in funcs}
for _ in range(1000):
shuffle(funcs)
for func in funcs:
number = 1000
t = timeit(lambda: func(iterable), number=number) / number
insort(times[func], t)
for func in sorted(funcs, key=times.get):
print(*('%4d ns ' % round(t * 1e9) for t in times[func][:3]), func.__name__)
print()
其他回答
如果你对一些更有可读性的东西感兴趣(但当然不是那么高效),你可以尝试:
def compare_lists(list1, list2):
if len(list1) != len(list2): # Weed out unequal length lists.
return False
for item in list1:
if item not in list2:
return False
return True
a_list_1 = ['apple', 'orange', 'grape', 'pear']
a_list_2 = ['pear', 'orange', 'grape', 'apple']
b_list_1 = ['apple', 'orange', 'grape', 'pear']
b_list_2 = ['apple', 'orange', 'banana', 'pear']
c_list_1 = ['apple', 'orange', 'grape']
c_list_2 = ['grape', 'orange']
print compare_lists(a_list_1, a_list_2) # Returns True
print compare_lists(b_list_1, b_list_2) # Returns False
print compare_lists(c_list_1, c_list_2) # Returns False
最佳答案
Twitter上有一个不错的帖子,介绍了实现all_equal()函数的各种方法。
给定一个列表输入,最好的提交是:
t.count(t[0]) == len(t)
其他方法
下面是线程的结果:
Have groupby() compare adjacent entries. This has an early-out for a mismatch, does not use extra memory, and it runs at C speed. g = itertools.groupby(s) next(g, True) and not next(g, False) Compare two slices offset from one another by one position. This uses extra memory but runs at C speed. s[1:] == s[:-1] Iterator version of slice comparison. It runs at C speed and does not use extra memory; however, the eq calls are expensive. all(map(operator.eq, s, itertools.islice(s, 1, None))) Compare the lowest and highest values. This runs at C speed, doesn't use extra memory, but does cost two inequality tests per datum. min(s) == max(s) # s must be non-empty Build a set. This runs at C speed and uses little extra memory but requires hashability and does not have an early-out. len(set(t))==1. At great cost, this handles NaNs and other objects with exotic equality relations. all(itertools.starmap(eq, itertools.product(s, repeat=2))) Pull out the first element and compare all the others to it, stopping at the first mismatch. Only disadvantage is that this doesn't run at C speed. it = iter(s) a = next(it, None) return all(a == b for b in it) Just count the first element. This is fast, simple, elegant. It runs at C speed, requires no additional memory, uses only equality tests, and makes only a single pass over the data. t.count(t[0]) == len(t)
检查是否所有元素都等于第一个。
np。allclose(数组,数组[0])
这是一段具有良好的Python性的代码,并且平衡了简单性和明显性,我认为,这应该也适用于相当老的Python版本。
def all_eq(lst):
for idx, itm in enumerate(lst):
if not idx: # == 0
prev = itm
if itm != prev:
return False
prev = itm
return True
这是一种简单的方法:
result = mylist and all(mylist[0] == elem for elem in mylist)
这稍微复杂一点,它会引起函数调用开销,但语义更清楚地说明:
def all_identical(seq):
if not seq:
# empty list is False.
return False
first = seq[0]
return all(first == elem for elem in seq)