我有一个熊猫DataFrame与“日期”列。现在我需要过滤掉DataFrame中日期在未来两个月之外的所有行。实际上,我只需要保留接下来两个月内的行。

实现这一目标的最佳方式是什么?


当前回答

如果你的日期是通过导入datetime包来标准化的,你可以简单地使用:

df[(df['date']>datetime.date(2016,1,1)) & (df['date']<datetime.date(2016,3,1))]  

使用datetime包来标准化你的日期字符串,你可以使用这个函数:

import datetime
datetime.datetime.strptime

其他回答

我还不允许写评论,所以我会写一个答案,如果有人读了所有的评论,并找到了这个。

如果数据集的索引是一个日期时间,并且您想仅通过(例如)月份过滤它,您可以执行以下操作:

df.loc[df.index.month == 3]

它将在3月份为您过滤数据集。

根据我的经验,前面的答案是不正确的,你不能传递一个简单的字符串,需要一个datetime对象。所以:

import datetime 
df.loc[datetime.date(year=2014,month=1,day=1):datetime.date(year=2014,month=2,day=1)]

如果日期在索引中,则简单地:

df['20160101':'20160301']

在pandas版本1.1.3中,我遇到了基于python datetime的索引降序排列的情况。在这种情况下

df.loc['2021-08-01':'2021-08-31']

返回空的。而

df.loc['2021-08-31':'2021-08-01']

返回预期的数据。

按日期过滤数据帧的最短方法: 假设你的日期列的类型是datetime64[ns]

# filter by single day
df_filtered = df[df['date'].dt.strftime('%Y-%m-%d') == '2014-01-01']

# filter by single month
df_filtered = df[df['date'].dt.strftime('%Y-%m') == '2014-01']

# filter by single year
df_filtered = df[df['date'].dt.strftime('%Y') == '2014']