我有一个熊猫DataFrame与“日期”列。现在我需要过滤掉DataFrame中日期在未来两个月之外的所有行。实际上,我只需要保留接下来两个月内的行。

实现这一目标的最佳方式是什么?


当前回答

因此,在加载csv数据文件时,我们需要将日期列设置为索引,如下所示,以便根据日期范围筛选数据。现在已弃用的方法:pd.DataFrame.from_csv()不需要这样做。

如果您只想显示1月至2月两个月的数据,例如2020-01-01至2020-02-29,您可以这样做:

import pandas as pd
mydata = pd.read_csv('mydata.csv',index_col='date') # or its index number, e.g. index_col=[0]
mydata['2020-01-01':'2020-02-29'] # will pull all the columns
#if just need one column, e.g. Cost, can be done:
mydata['2020-01-01':'2020-02-29','Cost'] 

这已经在Python 3.7中进行了测试。希望这对你有用。

其他回答

如果日期在索引中,则简单地:

df['20160101':'20160301']

导入熊猫文库

进口熊猫作为pd

步骤1:使用pd.to_datetime()方法将日期列转换为字符串

   df['date']=pd.to_datetime(df["date"],unit='s')

第二步:以任何预定的方式进行筛选(即2个月)

  df = df[(df["date"] >"2022-03-01" & df["date"] < "2022-05-03")]

步骤3:检查输出

 print(df)

如果date列是索引,则使用.loc进行基于标签的索引,或使用.iloc进行位置索引。

例如:

df.loc['2014-01-01':'2014-02-01']

详情见这里http://pandas.pydata.org/pandas-docs/stable/dsintro.html#indexing-selection

如果列不是索引,你有两个选择:

将其作为索引(如果是时间序列数据,可以是临时索引,也可以是永久索引) df [(df(“日期”)> 2013-01-01)& (df(“日期”)< ' 2013-02-01 '))

请看这里的一般解释

注意:.ix已弃用。

如果你的日期是通过导入datetime包来标准化的,你可以简单地使用:

df[(df['date']>datetime.date(2016,1,1)) & (df['date']<datetime.date(2016,3,1))]  

使用datetime包来标准化你的日期字符串,你可以使用这个函数:

import datetime
datetime.datetime.strptime

我还不允许写评论,所以我会写一个答案,如果有人读了所有的评论,并找到了这个。

如果数据集的索引是一个日期时间,并且您想仅通过(例如)月份过滤它,您可以执行以下操作:

df.loc[df.index.month == 3]

它将在3月份为您过滤数据集。