我有一个熊猫DataFrame与“日期”列。现在我需要过滤掉DataFrame中日期在未来两个月之外的所有行。实际上,我只需要保留接下来两个月内的行。
实现这一目标的最佳方式是什么?
我有一个熊猫DataFrame与“日期”列。现在我需要过滤掉DataFrame中日期在未来两个月之外的所有行。实际上,我只需要保留接下来两个月内的行。
实现这一目标的最佳方式是什么?
当前回答
如果您的datetime列具有Pandas datetime类型(例如datetime64[ns]),为了进行适当的过滤,您需要pd。时间戳对象,例如:
from datetime import date
import pandas as pd
value_to_check = pd.Timestamp(date.today().year, 1, 1)
filter_mask = df['date_column'] < value_to_check
filtered_df = df[filter_mask]
其他回答
如果您的datetime列具有Pandas datetime类型(例如datetime64[ns]),为了进行适当的过滤,您需要pd。时间戳对象,例如:
from datetime import date
import pandas as pd
value_to_check = pd.Timestamp(date.today().year, 1, 1)
filter_mask = df['date_column'] < value_to_check
filtered_df = df[filter_mask]
如果您已经使用pd将字符串转换为日期格式。To_datetime你可以使用:
df = df [(df[日期]>”2018-01-01”)及(df[日期]<”2019-07-01”)
因此,在加载csv数据文件时,我们需要将日期列设置为索引,如下所示,以便根据日期范围筛选数据。现在已弃用的方法:pd.DataFrame.from_csv()不需要这样做。
如果您只想显示1月至2月两个月的数据,例如2020-01-01至2020-02-29,您可以这样做:
import pandas as pd
mydata = pd.read_csv('mydata.csv',index_col='date') # or its index number, e.g. index_col=[0]
mydata['2020-01-01':'2020-02-29'] # will pull all the columns
#if just need one column, e.g. Cost, can be done:
mydata['2020-01-01':'2020-02-29','Cost']
这已经在Python 3.7中进行了测试。希望这对你有用。
如果date列是索引,则使用.loc进行基于标签的索引,或使用.iloc进行位置索引。
例如:
df.loc['2014-01-01':'2014-02-01']
详情见这里http://pandas.pydata.org/pandas-docs/stable/dsintro.html#indexing-selection
如果列不是索引,你有两个选择:
将其作为索引(如果是时间序列数据,可以是临时索引,也可以是永久索引) df [(df(“日期”)> 2013-01-01)& (df(“日期”)< ' 2013-02-01 '))
请看这里的一般解释
注意:.ix已弃用。
# 60 days from today
after_60d = pd.to_datetime('today').date() + datetime.timedelta(days=60)
# filter date col less than 60 days date
df[df['date_col'] < after_60d]