我需要在c++中加载和使用CSV文件数据。在这一点上,它实际上只是一个以逗号分隔的解析器(即不用担心转义新行和逗号)。主要需要的是逐行解析器,它将在每次调用方法时为下一行返回一个向量。
我发现这篇文章看起来很有前途: http://www.boost.org/doc/libs/1_35_0/libs/spirit/example/fundamental/list_parser.cpp
我从未使用过Boost's Spirit,但我愿意尝试一下。但前提是我忽略了一个更直接的解决方案。
我需要在c++中加载和使用CSV文件数据。在这一点上,它实际上只是一个以逗号分隔的解析器(即不用担心转义新行和逗号)。主要需要的是逐行解析器,它将在每次调用方法时为下一行返回一个向量。
我发现这篇文章看起来很有前途: http://www.boost.org/doc/libs/1_35_0/libs/spirit/example/fundamental/list_parser.cpp
我从未使用过Boost's Spirit,但我愿意尝试一下。但前提是我忽略了一个更直接的解决方案。
当前回答
如果您所需要的只是加载一个双精度数据文件(没有整数,没有文本),那么这里有一个随时可用的函数。
#include <sstream>
#include <fstream>
#include <iterator>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;
/**
* Parse a CSV data file and fill the 2d STL vector "data".
* Limits: only "pure datas" of doubles, not encapsulated by " and without \n inside.
* Further no formatting in the data (e.g. scientific notation)
* It however handles both dots and commas as decimal separators and removes thousand separator.
*
* returnCodes[0]: file access 0-> ok 1-> not able to read; 2-> decimal separator equal to comma separator
* returnCodes[1]: number of records
* returnCodes[2]: number of fields. -1 If rows have different field size
*
*/
vector<int>
readCsvData (vector <vector <double>>& data, const string& filename, const string& delimiter, const string& decseparator){
int vv[3] = { 0,0,0 };
vector<int> returnCodes(&vv[0], &vv[0]+3);
string rowstring, stringtoken;
double doubletoken;
int rowcount=0;
int fieldcount=0;
data.clear();
ifstream iFile(filename, ios_base::in);
if (!iFile.is_open()){
returnCodes[0] = 1;
return returnCodes;
}
while (getline(iFile, rowstring)) {
if (rowstring=="") continue; // empty line
rowcount ++; //let's start with 1
if(delimiter == decseparator){
returnCodes[0] = 2;
return returnCodes;
}
if(decseparator != "."){
// remove dots (used as thousand separators)
string::iterator end_pos = remove(rowstring.begin(), rowstring.end(), '.');
rowstring.erase(end_pos, rowstring.end());
// replace decimal separator with dots.
replace(rowstring.begin(), rowstring.end(),decseparator.c_str()[0], '.');
} else {
// remove commas (used as thousand separators)
string::iterator end_pos = remove(rowstring.begin(), rowstring.end(), ',');
rowstring.erase(end_pos, rowstring.end());
}
// tokenize..
vector<double> tokens;
// Skip delimiters at beginning.
string::size_type lastPos = rowstring.find_first_not_of(delimiter, 0);
// Find first "non-delimiter".
string::size_type pos = rowstring.find_first_of(delimiter, lastPos);
while (string::npos != pos || string::npos != lastPos){
// Found a token, convert it to double add it to the vector.
stringtoken = rowstring.substr(lastPos, pos - lastPos);
if (stringtoken == "") {
tokens.push_back(0.0);
} else {
istringstream totalSString(stringtoken);
totalSString >> doubletoken;
tokens.push_back(doubletoken);
}
// Skip delimiters. Note the "not_of"
lastPos = rowstring.find_first_not_of(delimiter, pos);
// Find next "non-delimiter"
pos = rowstring.find_first_of(delimiter, lastPos);
}
if(rowcount == 1){
fieldcount = tokens.size();
returnCodes[2] = tokens.size();
} else {
if ( tokens.size() != fieldcount){
returnCodes[2] = -1;
}
}
data.push_back(tokens);
}
iFile.close();
returnCodes[1] = rowcount;
return returnCodes;
}
其他回答
另一个类似于Loki Astari的答案的解决方案,在c++ 11中。这里的行是给定类型的std::元组。代码扫描一行,然后扫描到每个分隔符,然后将值直接转换并转储到元组中(使用一些模板代码)。
for (auto row : csv<std::string, int, float>(file, ',')) {
std::cout << "first col: " << std::get<0>(row) << std::endl;
}
优势:
非常干净,使用简单,只有c++ 11。 自动类型转换为std::tuple<t1,…>通过算子>>。
缺少什么:
转义和引用 没有错误处理的情况下畸形的CSV。
主要代码:
#include <iterator>
#include <sstream>
#include <string>
namespace csvtools {
/// Read the last element of the tuple without calling recursively
template <std::size_t idx, class... fields>
typename std::enable_if<idx >= std::tuple_size<std::tuple<fields...>>::value - 1>::type
read_tuple(std::istream &in, std::tuple<fields...> &out, const char delimiter) {
std::string cell;
std::getline(in, cell, delimiter);
std::stringstream cell_stream(cell);
cell_stream >> std::get<idx>(out);
}
/// Read the @p idx-th element of the tuple and then calls itself with @p idx + 1 to
/// read the next element of the tuple. Automatically falls in the previous case when
/// reaches the last element of the tuple thanks to enable_if
template <std::size_t idx, class... fields>
typename std::enable_if<idx < std::tuple_size<std::tuple<fields...>>::value - 1>::type
read_tuple(std::istream &in, std::tuple<fields...> &out, const char delimiter) {
std::string cell;
std::getline(in, cell, delimiter);
std::stringstream cell_stream(cell);
cell_stream >> std::get<idx>(out);
read_tuple<idx + 1, fields...>(in, out, delimiter);
}
}
/// Iterable csv wrapper around a stream. @p fields the list of types that form up a row.
template <class... fields>
class csv {
std::istream &_in;
const char _delim;
public:
typedef std::tuple<fields...> value_type;
class iterator;
/// Construct from a stream.
inline csv(std::istream &in, const char delim) : _in(in), _delim(delim) {}
/// Status of the underlying stream
/// @{
inline bool good() const {
return _in.good();
}
inline const std::istream &underlying_stream() const {
return _in;
}
/// @}
inline iterator begin();
inline iterator end();
private:
/// Reads a line into a stringstream, and then reads the line into a tuple, that is returned
inline value_type read_row() {
std::string line;
std::getline(_in, line);
std::stringstream line_stream(line);
std::tuple<fields...> retval;
csvtools::read_tuple<0, fields...>(line_stream, retval, _delim);
return retval;
}
};
/// Iterator; just calls recursively @ref csv::read_row and stores the result.
template <class... fields>
class csv<fields...>::iterator {
csv::value_type _row;
csv *_parent;
public:
typedef std::input_iterator_tag iterator_category;
typedef csv::value_type value_type;
typedef std::size_t difference_type;
typedef csv::value_type * pointer;
typedef csv::value_type & reference;
/// Construct an empty/end iterator
inline iterator() : _parent(nullptr) {}
/// Construct an iterator at the beginning of the @p parent csv object.
inline iterator(csv &parent) : _parent(parent.good() ? &parent : nullptr) {
++(*this);
}
/// Read one row, if possible. Set to end if parent is not good anymore.
inline iterator &operator++() {
if (_parent != nullptr) {
_row = _parent->read_row();
if (!_parent->good()) {
_parent = nullptr;
}
}
return *this;
}
inline iterator operator++(int) {
iterator copy = *this;
++(*this);
return copy;
}
inline csv::value_type const &operator*() const {
return _row;
}
inline csv::value_type const *operator->() const {
return &_row;
}
bool operator==(iterator const &other) {
return (this == &other) or (_parent == nullptr and other._parent == nullptr);
}
bool operator!=(iterator const &other) {
return not (*this == other);
}
};
template <class... fields>
typename csv<fields...>::iterator csv<fields...>::begin() {
return iterator(*this);
}
template <class... fields>
typename csv<fields...>::iterator csv<fields...>::end() {
return iterator();
}
我在GitHub上放了一个小的工作示例;我一直用它来解析一些数值数据,它达到了它的目的。
您需要做的第一件事是确保文件存在。来完成 这你只需要尝试打开文件流的路径。在你 打开文件流使用stream.fail()查看它是否如预期的那样工作, 与否。
bool fileExists(string fileName)
{
ifstream test;
test.open(fileName.c_str());
if (test.fail())
{
test.close();
return false;
}
else
{
test.close();
return true;
}
}
您还必须验证所提供的文件是正确的文件类型。 要做到这一点,您需要查看提供的文件路径直到 您可以找到文件扩展名。一旦你有了文件扩展名,请确保 它是一个。csv文件。
bool verifyExtension(string filename)
{
int period = 0;
for (unsigned int i = 0; i < filename.length(); i++)
{
if (filename[i] == '.')
period = i;
}
string extension;
for (unsigned int i = period; i < filename.length(); i++)
extension += filename[i];
if (extension == ".csv")
return true;
else
return false;
}
此函数将返回稍后在错误消息中使用的文件扩展名。
string getExtension(string filename)
{
int period = 0;
for (unsigned int i = 0; i < filename.length(); i++)
{
if (filename[i] == '.')
period = i;
}
string extension;
if (period != 0)
{
for (unsigned int i = period; i < filename.length(); i++)
extension += filename[i];
}
else
extension = "NO FILE";
return extension;
}
这个函数实际上会调用上面创建的错误检查,然后解析文件。
void parseFile(string fileName)
{
if (fileExists(fileName) && verifyExtension(fileName))
{
ifstream fs;
fs.open(fileName.c_str());
string fileCommand;
while (fs.good())
{
string temp;
getline(fs, fileCommand, '\n');
for (unsigned int i = 0; i < fileCommand.length(); i++)
{
if (fileCommand[i] != ',')
temp += fileCommand[i];
else
temp += " ";
}
if (temp != "\0")
{
// Place your code here to run the file.
}
}
fs.close();
}
else if (!fileExists(fileName))
{
cout << "Error: The provided file does not exist: " << fileName << endl;
if (!verifyExtension(fileName))
{
if (getExtension(fileName) != "NO FILE")
cout << "\tCheck the file extension." << endl;
else
cout << "\tThere is no file in the provided path." << endl;
}
}
else if (!verifyExtension(fileName))
{
if (getExtension(fileName) != "NO FILE")
cout << "Incorrect file extension provided: " << getExtension(fileName) << endl;
else
cout << "There is no file in the following path: " << fileName << endl;
}
}
使用Boost Tokenizer的解决方案:
std::vector<std::string> vec;
using namespace boost;
tokenizer<escaped_list_separator<char> > tk(
line, escaped_list_separator<char>('\\', ',', '\"'));
for (tokenizer<escaped_list_separator<char> >::iterator i(tk.begin());
i!=tk.end();++i)
{
vec.push_back(*i);
}
另一个CSV I/O库可以在这里找到:
http://code.google.com/p/fast-cpp-csv-parser/
#include "csv.h"
int main(){
io::CSVReader<3> in("ram.csv");
in.read_header(io::ignore_extra_column, "vendor", "size", "speed");
std::string vendor; int size; double speed;
while(in.read_row(vendor, size, speed)){
// do stuff with the data
}
}
CSV文件是由行组成的文本文件,每一行都由逗号分隔的令牌组成。虽然在解析时你应该知道一些事情:
(0)文件用“CP_ACP”编码页编码。您应该使用相同的编码页来解码文件内容。
(1) CSV丢失了“复合单元格”信息(比如rowspan > 1),所以当它被读回excel时,复合单元格信息丢失。
(2)单元格文本可以在头部和尾部用""" "进行引用,文字引用char将变成双引号。因此,结束匹配的引号字符必须是一个引号字符,而不是后面跟着另一个引号字符。例如,如果一个单元格有逗号,它必须在csv中被引用,因为逗号在csv中有意义。
(3)当单元格内容有多行时,它将在CSV中被引用,在这种情况下,解析器必须继续读取CSV文件中的下几行,直到获得与第一个引用字符匹配的结束引号字符,确保当前逻辑行读取完成后再解析该行的令牌。
例如:在CSV文件中,以下3个物理行是由3个令牌组成的逻辑行:
--+----------
1 |a,"b-first part
2 |b-second part
3 |b-third part",c
--+----------