显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
当前回答
当在一个循环中测试range和xrange时(我知道我应该使用timeit,但这是使用一个简单的列表理解示例从内存中快速删除的),我发现如下:
import time
for x in range(1, 10):
t = time.time()
[v*10 for v in range(1, 10000)]
print "range: %.4f" % ((time.time()-t)*100)
t = time.time()
[v*10 for v in xrange(1, 10000)]
print "xrange: %.4f" % ((time.time()-t)*100)
其给出:
$python range_tests.py
range: 0.4273
xrange: 0.3733
range: 0.3881
xrange: 0.3507
range: 0.3712
xrange: 0.3565
range: 0.4031
xrange: 0.3558
range: 0.3714
xrange: 0.3520
range: 0.3834
xrange: 0.3546
range: 0.3717
xrange: 0.3511
range: 0.3745
xrange: 0.3523
range: 0.3858
xrange: 0.3997 <- garbage collection?
或者,在for循环中使用xrange:
range: 0.4172
xrange: 0.3701
range: 0.3840
xrange: 0.3547
range: 0.3830
xrange: 0.3862 <- garbage collection?
range: 0.4019
xrange: 0.3532
range: 0.3738
xrange: 0.3726
range: 0.3762
xrange: 0.3533
range: 0.3710
xrange: 0.3509
range: 0.3738
xrange: 0.3512
range: 0.3703
xrange: 0.3509
我的代码段测试是否正确?对xrange的较慢实例有何评论?或者更好的例子:-)
其他回答
这是出于优化的原因。
range()将创建从开始到结束的值列表(示例中为0..20)。这将成为非常大范围的昂贵操作。
另一方面,xrange()更为优化。它只会在需要时(通过xrange序列对象)计算下一个值,不会像range()那样创建所有值的列表。
每个人都对它进行了大量的解释。但我想让它自己看。我用蟒蛇。因此,我打开了资源监视器(在Windows!中),首先执行了以下命令:
a=0
for i in range(1,100000):
a=a+i
然后检查“正在使用”内存中的更改。这是微不足道的。然后,我运行了以下代码:
for i in list(range(1,100000)):
a=a+i
它立即占用了大量内存。我确信。你可以自己试试。
如果您使用的是Python 2X,那么在第一段代码中,将“range()”替换为“xrange()”,将“list(range())”替换成“range()”。
range:-range将一次填充所有内容。这意味着范围中的每个数字都将占用内存。
xrange:xrange有点像生成器,当你想要数字的范围,但你不希望它们被存储时,它就会出现在图片中,就像你想使用for loop时一样。
此外,if do list(xrange(…))将等同于range(…)。
所以列表很慢。
而且xrange确实没有完全完成序列
这就是为什么它不是一个列表,而是一个xrange对象
什么range在运行时返回静态列表。xrange返回一个对象(其作用类似于生成器,尽管它肯定不是一个),在需要时从中生成值。
什么时候使用哪个?
如果你想为一个巨大的范围生成一个列表,比如10亿,特别是当你有一个“记忆敏感系统”,比如手机时,可以使用xrange。如果要在列表中重复多次,请使用范围。
PS:Python 3.x的range函数==Python 2.x的xrange函数。