显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同
for i in range(0, 20):
for i in xrange(0, 20):
当前回答
这是出于优化的原因。
range()将创建从开始到结束的值列表(示例中为0..20)。这将成为非常大范围的昂贵操作。
另一方面,xrange()更为优化。它只会在需要时(通过xrange序列对象)计算下一个值,不会像range()那样创建所有值的列表。
其他回答
请参阅本文,了解range和xrange之间的差异:
引用:
range返回您所认为的结果:连续列表整数,具有以0开头的定义长度。xrange,返回一个“xrange对象”,它的行为非常像迭代器
在这个简单的示例中,您将发现xrange优于range的优势:
import timeit
t1 = timeit.default_timer()
a = 0
for i in xrange(1, 100000000):
pass
t2 = timeit.default_timer()
print "time taken: ", (t2-t1) # 4.49153590202 seconds
t1 = timeit.default_timer()
a = 0
for i in range(1, 100000000):
pass
t2 = timeit.default_timer()
print "time taken: ", (t2-t1) # 7.04547905922 seconds
在xrange的情况下,上面的示例没有反映出任何明显更好的内容。
现在看看下面的例子,与xrange相比,range真的很慢。
import timeit
t1 = timeit.default_timer()
a = 0
for i in xrange(1, 100000000):
if i == 10000:
break
t2 = timeit.default_timer()
print "time taken: ", (t2-t1) # 0.000764846801758 seconds
t1 = timeit.default_timer()
a = 0
for i in range(1, 100000000):
if i == 10000:
break
t2 = timeit.default_timer()
print "time taken: ", (t2-t1) # 2.78506207466 seconds
使用range,它已经创建了一个从0到100000000的列表(耗时),但xrange是一个生成器,它只根据需要生成数字,也就是说,如果迭代继续的话。
在Python-3中,范围功能的实现与Python-2中的xrange功能的实现相同,而他们在Python-3中取消了xrange
快乐编码!!
每个人都对它进行了大量的解释。但我想让它自己看。我用蟒蛇。因此,我打开了资源监视器(在Windows!中),首先执行了以下命令:
a=0
for i in range(1,100000):
a=a+i
然后检查“正在使用”内存中的更改。这是微不足道的。然后,我运行了以下代码:
for i in list(range(1,100000)):
a=a+i
它立即占用了大量内存。我确信。你可以自己试试。
如果您使用的是Python 2X,那么在第一段代码中,将“range()”替换为“xrange()”,将“list(range())”替换成“range()”。
一定要花一些时间阅读图书馆参考资料。你越熟悉它,就越能更快地找到类似问题的答案。特别重要的是关于内置对象和类型的前几章。
xrange类型的优点是xrange对象总是使用相同数量的内存,无论它代表的范围大小如何。没有一致的性能优势。
另一种快速查找Python构造信息的方法是docstring和help函数:
print xrange.__doc__ # def doc(x): print x.__doc__ is super useful
help(xrange)
xrange返回一个迭代器,每次只在内存中保留一个数字。范围将整个数字列表保存在内存中。