你能告诉我什么时候使用这些矢量化方法和基本的例子吗?
我看到map是一个系列方法,而其余的是DataFrame方法。我对apply和applymap方法感到困惑。为什么我们有两个方法来应用一个函数到一个数据帧?再一次,简单的例子说明用法将是伟大的!
你能告诉我什么时候使用这些矢量化方法和基本的例子吗?
我看到map是一个系列方法,而其余的是DataFrame方法。我对apply和applymap方法感到困惑。为什么我们有两个方法来应用一个函数到一个数据帧?再一次,简单的例子说明用法将是伟大的!
当前回答
apply和applymap之间的区别可能是最简单的解释:
Apply将整个列作为参数,然后将结果分配给该列
Applymap将单独的单元格值作为参数,并将结果分配回该单元格。
注意:如果apply返回单个值,你将得到这个值而不是赋值后的列,最终将只有一行而不是矩阵。
其他回答
apply和applymap之间的区别可能是最简单的解释:
Apply将整个列作为参数,然后将结果分配给该列
Applymap将单独的单元格值作为参数,并将结果分配回该单元格。
注意:如果apply返回单个值,你将得到这个值而不是赋值后的列,最终将只有一行而不是矩阵。
除了其他答案,在一个系列中还有map和apply。
Apply可以从一个系列中生成一个DataFrame;然而,map只会在另一个系列的每个单元格中放入一个系列,这可能不是您想要的。
In [40]: p=pd.Series([1,2,3])
In [41]: p
Out[31]:
0 1
1 2
2 3
dtype: int64
In [42]: p.apply(lambda x: pd.Series([x, x]))
Out[42]:
0 1
0 1 1
1 2 2
2 3 3
In [43]: p.map(lambda x: pd.Series([x, x]))
Out[43]:
0 0 1
1 1
dtype: int64
1 0 2
1 2
dtype: int64
2 0 3
1 3
dtype: int64
dtype: object
另外,如果我有一个带有副作用的函数,比如“连接到web服务器”,为了清晰起见,我可能会使用apply。
series.apply(download_file_for_every_element)
Map不仅可以使用函数,还可以使用字典或其他系列。假设你想操纵排列。
Take
1 2 3 4 5
2 1 4 5 3
这个排列的平方是
1 2 3 4 5
1 2 5 3 4
你可以用map来计算。不确定self-application是否有文档记录,但它在0.15.1中可以工作。
In [39]: p=pd.Series([1,0,3,4,2])
In [40]: p.map(p)
Out[40]:
0 0
1 1
2 4
3 2
4 3
dtype: int64
@jeremiahbuddha提到apply适用于行/列,而applymap适用于元素。但似乎仍然可以使用apply进行元素计算....
frame.apply(np.sqrt)
Out[102]:
b d e
Utah NaN 1.435159 NaN
Ohio 1.098164 0.510594 0.729748
Texas NaN 0.456436 0.697337
Oregon 0.359079 NaN NaN
frame.applymap(np.sqrt)
Out[103]:
b d e
Utah NaN 1.435159 NaN
Ohio 1.098164 0.510594 0.729748
Texas NaN 0.456436 0.697337
Oregon 0.359079 NaN NaN
快速的总结
DataFrame。Apply一次操作整个行或列。 DataFrame。applymap系列。apply和Series。Map操作1 元素。
系列。应用和系列。地图是相似的,经常可以互换。下面osa的回答中讨论了他们之间的一些细微差异。
原因:
下面的示例显示apply和applymap应用到一个DataFrame。
map函数只能应用在Series上。不能在DataFrame上应用map。
需要记住的是,apply可以做任何applymap可以做的事情,但apply有额外的选项。
X因子选项是:axis和result_type,其中result_type仅在axis=1时有效(对于列)。
df = DataFrame(1, columns=list('abc'),
index=list('1234'))
print(df)
f = lambda x: np.log(x)
print(df.applymap(f)) # apply to the whole dataframe
print(np.log(df)) # applied to the whole dataframe
print(df.applymap(np.sum)) # reducing can be applied for rows only
# apply can take different options (vs. applymap cannot)
print(df.apply(f)) # same as applymap
print(df.apply(sum, axis=1)) # reducing example
print(df.apply(np.log, axis=1)) # cannot reduce
print(df.apply(lambda x: [1, 2, 3], axis=1, result_type='expand')) # expand result
作为旁注,不应将Series映射函数与Python映射函数混淆。
第一个应用在Series上,用于映射值,第二个应用到可迭代对象的每个项。
最后,不要混淆dataframe apply方法和groupby apply方法。