你能告诉我什么时候使用这些矢量化方法和基本的例子吗?

我看到map是一个系列方法,而其余的是DataFrame方法。我对apply和applymap方法感到困惑。为什么我们有两个方法来应用一个函数到一个数据帧?再一次,简单的例子说明用法将是伟大的!


当前回答

除了其他答案,在一个系列中还有map和apply。

Apply可以从一个系列中生成一个DataFrame;然而,map只会在另一个系列的每个单元格中放入一个系列,这可能不是您想要的。

In [40]: p=pd.Series([1,2,3])
In [41]: p
Out[31]:
0    1
1    2
2    3
dtype: int64

In [42]: p.apply(lambda x: pd.Series([x, x]))
Out[42]: 
   0  1
0  1  1
1  2  2
2  3  3

In [43]: p.map(lambda x: pd.Series([x, x]))
Out[43]: 
0    0    1
1    1
dtype: int64
1    0    2
1    2
dtype: int64
2    0    3
1    3
dtype: int64
dtype: object

另外,如果我有一个带有副作用的函数,比如“连接到web服务器”,为了清晰起见,我可能会使用apply。

series.apply(download_file_for_every_element) 

Map不仅可以使用函数,还可以使用字典或其他系列。假设你想操纵排列。

Take

1 2 3 4 5
2 1 4 5 3

这个排列的平方是

1 2 3 4 5
1 2 5 3 4

你可以用map来计算。不确定self-application是否有文档记录,但它在0.15.1中可以工作。

In [39]: p=pd.Series([1,0,3,4,2])

In [40]: p.map(p)
Out[40]: 
0    0
1    1
2    4
3    2
4    3
dtype: int64

其他回答

我的理解:

从功能上看:

如果函数具有需要在列/行内进行比较的变量,请使用 适用。

例如:lambda x: x.max()-x.mean()。

如果将函数应用于每个元素:

1>如果已定位某列/行,使用apply

2>如果应用于整个数据帧,使用applymap

majority = lambda x : x > 17
df2['legal_drinker'] = df2['age'].apply(majority)

def times10(x):
  if type(x) is int:
    x *= 10 
  return x
df2.applymap(times10)

快速的总结

DataFrame。Apply一次操作整个行或列。 DataFrame。applymap系列。apply和Series。Map操作1 元素。

系列。应用和系列。地图是相似的,经常可以互换。下面osa的回答中讨论了他们之间的一些细微差异。

@jeremiahbuddha提到apply适用于行/列,而applymap适用于元素。但似乎仍然可以使用apply进行元素计算....

frame.apply(np.sqrt)
Out[102]: 
               b         d         e
Utah         NaN  1.435159       NaN
Ohio    1.098164  0.510594  0.729748
Texas        NaN  0.456436  0.697337
Oregon  0.359079       NaN       NaN

frame.applymap(np.sqrt)
Out[103]: 
               b         d         e
Utah         NaN  1.435159       NaN
Ohio    1.098164  0.510594  0.729748
Texas        NaN  0.456436  0.697337
Oregon  0.359079       NaN       NaN

apply工作在数据帧的行/列基础上 applymap在DataFrame上按元素工作 map在Series上按元素工作


直接摘自Wes McKinney的Python for Data Analysis一书,第132页(我强烈推荐这本书):

另一个常见操作是将一维数组上的函数应用到每一列或行。DataFrame的apply方法是这样做的:

In [116]: frame = DataFrame(np.random.randn(4, 3), columns=list('bde'), index=['Utah', 'Ohio', 'Texas', 'Oregon'])

In [117]: frame
Out[117]: 
               b         d         e
Utah   -0.029638  1.081563  1.280300
Ohio    0.647747  0.831136 -1.549481
Texas   0.513416 -0.884417  0.195343
Oregon -0.485454 -0.477388 -0.309548

In [118]: f = lambda x: x.max() - x.min()

In [119]: frame.apply(f)
Out[119]: 
b    1.133201
d    1.965980
e    2.829781
dtype: float64

许多最常见的数组统计(如sum和mean)是DataFrame方法, 所以没有必要使用apply。

也可以使用元素级Python函数。假设您希望从帧中的每个浮点值计算一个格式化字符串。你可以用applymap:

In [120]: format = lambda x: '%.2f' % x

In [121]: frame.applymap(format)
Out[121]: 
            b      d      e
Utah    -0.03   1.08   1.28
Ohio     0.65   0.83  -1.55
Texas    0.51  -0.88   0.20
Oregon  -0.49  -0.48  -0.31

命名为applymap的原因是Series有一个map方法用于应用一个按元素划分的函数:

In [122]: frame['e'].map(format)
Out[122]: 
Utah       1.28
Ohio      -1.55
Texas      0.20
Oregon    -0.31
Name: e, dtype: object

比较map, applymap和apply: Context Matters

第一个主要区别:定义

map在Series ONLY上定义 applymap只在DataFrames上定义 apply定义在BOTH上

第二个主要区别:INPUT参数

map接受字典、系列或可调用 Applymap和apply只接受可调用对象

第三个主要区别:行为

map是系列的元素 applymap是DataFrames的elementwise Apply也适用于elementwise,但适用于更复杂的操作和聚合。行为和返回值取决于函数。

第四个主要区别(最重要的一个):用例

map用于将值从一个域映射到另一个域,因此对性能进行了优化(例如,df['A']。Map ({1:'a', 2:'b', 3:'c'})) applymap适用于跨多行/列的elementwise转换(例如df[['A', 'B', 'C']]].applymap(str.strip)) Apply用于应用任何不能向量化的函数(例如df['sentence ']. Apply (nltk.sent_tokenize))。

另见什么时候我应该(不)想要在我的代码中使用熊猫apply() ?我写了一篇关于使用apply最合适的场景的文章(注意不是很多,但是有一些——apply通常很慢)。


总结

Footnotes map when passed a dictionary/Series will map elements based on the keys in that dictionary/Series. Missing values will be recorded as NaN in the output. applymap in more recent versions has been optimised for some operations. You will find applymap slightly faster than apply in some cases. My suggestion is to test them both and use whatever works better. map is optimised for elementwise mappings and transformation. Operations that involve dictionaries or Series will enable pandas to use faster code paths for better performance. Series.apply returns a scalar for aggregating operations, Series otherwise. Similarly for DataFrame.apply. Note that apply also has fastpaths when called with certain NumPy functions such as mean, sum, etc.