如何在Python中检查字符串是否表示数值?

def is_number(s):
    try:
        float(s)
        return True
    except ValueError:
        return False

上述方法可行,但似乎很笨拙。


如果您正在测试的内容来自用户输入,那么即使它表示int或float,它仍然是一个字符串。请参阅如何将输入读取为数字?用于转换输入,并询问用户输入,直到他们给出有效响应以确保输入在继续之前表示int或float(或其他要求)。


当前回答

def is_float(s):
    if s is None:
        return False

    if len(s) == 0:
        return False

    digits_count = 0
    dots_count = 0
    signs_count = 0

    for c in s:
        if '0' <= c <= '9':
            digits_count += 1
        elif c == '.':
            dots_count += 1
        elif c == '-' or c == '+':
            signs_count += 1
        else:
            return False

    if digits_count == 0:
        return False

    if dots_count > 1:
        return False

    if signs_count > 1:
        return False

    return True

其他回答

您可以使用Unicode字符串,它们有一种方法可以满足您的需要:

>>> s = u"345"
>>> s.isnumeric()
True

Or:

>>> s = "345"
>>> u = unicode(s)
>>> u.isnumeric()
True

http://www.tutorialspoint.com/python/string_isnumeric.htm

http://docs.python.org/2/howto/unicode.html

我认为您的解决方案很好,但有一个正确的正则表达式实现。

对于这些答案,似乎有很多正则表达式的仇恨,我认为这是不合理的,正则表达式可以相当干净、正确和快速。这真的取决于你想做什么。最初的问题是如何“检查字符串是否可以表示为数字(浮点数)”(根据你的标题)。在检查了数值/浮点值是否有效后,您可能希望使用它,在这种情况下,try/except非常有意义。但是,如果出于某种原因,您只想验证字符串是数字,那么正则表达式也可以正常工作,但很难得到正确的结果。例如,我认为到目前为止,大多数正则表达式的答案都不能正确解析没有整数部分(如“.7”)的字符串,就python而言,整数部分是一个浮点数。在不需要小数部分的单个正则表达式中检查这一点有点困难。我包含了两个正则表达式来显示这一点。

它确实提出了一个有趣的问题,即“数字”是什么。您是否包含“inf”,它在python中作为浮点数有效?或者您是否包含“数字”但可能无法在python中表示的数字(例如大于float max的数字)。

解析数字的方式也存在歧义。例如,“--20”呢?这是一个“数字”吗?这是代表“20”的合法方式吗?Python将允许您执行“var=--20”并将其设置为20(尽管实际上这是因为它将其作为表达式处理),但float(“--20”)不起作用。

无论如何,在没有更多信息的情况下,这里有一个正则表达式,我相信它涵盖了python解析它们时的所有int和float。

# Doesn't properly handle floats missing the integer part, such as ".7"
SIMPLE_FLOAT_REGEXP = re.compile(r'^[-+]?[0-9]+\.?[0-9]+([eE][-+]?[0-9]+)?$')
# Example "-12.34E+56"      # sign (-)
                            #     integer (12)
                            #           mantissa (34)
                            #                    exponent (E+56)

# Should handle all floats
FLOAT_REGEXP = re.compile(r'^[-+]?([0-9]+|[0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?$')
# Example "-12.34E+56"      # sign (-)
                            #     integer (12)
                            #           OR
                            #             int/mantissa (12.34)
                            #                            exponent (E+56)

def is_float(str):
  return True if FLOAT_REGEXP.match(str) else False

一些示例测试值:

True  <- +42
True  <- +42.42
False <- +42.42.22
True  <- +42.42e22
True  <- +42.42E-22
False <- +42.42e-22.8
True  <- .42
False <- 42nope

在@ron reiter的回答中运行基准测试代码表明,这个正则表达式实际上比普通正则表达式快,并且在处理错误值方面比异常快得多,这是有道理的。结果:

check_regexp with good floats: 18.001921
check_regexp with bad floats: 17.861423
check_regexp with strings: 17.558862
check_correct_regexp with good floats: 11.04428
check_correct_regexp with bad floats: 8.71211
check_correct_regexp with strings: 8.144161
check_replace with good floats: 6.020597
check_replace with bad floats: 5.343049
check_replace with strings: 5.091642
check_exception with good floats: 5.201605
check_exception with bad floats: 23.921864
check_exception with strings: 23.755481

我也使用了您提到的函数,但很快我注意到字符串“Nan”、“Inf”及其变体被视为数字。因此,我建议您改进函数的版本,该版本将在这些类型的输入上返回false,并且不会失败“1e3”变体:

def is_float(text):
    try:
        float(text)
        # check for nan/infinity etc.
        if text.isalpha():
            return False
        return True
    except ValueError:
        return False

我做了一些速度测试。让我们假设,如果字符串可能是一个数字,则try/except策略是最快的。如果字符串不可能是数字,并且您对整数检查感兴趣,则值得进行一些测试(isdigit加上标题“-”)。如果您有兴趣检查浮点数,则必须使用try/except代码而不进行转义。

您可能需要考虑一个例外:字符串“NaN”

如果您希望is_number为“NaN”返回FALSE,则此代码将无法工作,因为Python将其转换为非数字的数字表示(请讨论身份问题):

>>> float('NaN')
nan

否则,我应该感谢您现在广泛使用的这段代码

G.