如何在Python中检查字符串是否表示数值?

def is_number(s):
    try:
        float(s)
        return True
    except ValueError:
        return False

上述方法可行,但似乎很笨拙。


如果您正在测试的内容来自用户输入,那么即使它表示int或float,它仍然是一个字符串。请参阅如何将输入读取为数字?用于转换输入,并询问用户输入,直到他们给出有效响应以确保输入在继续之前表示int或float(或其他要求)。


当前回答

在Alfe指出您不需要单独检查浮点数后更新,因为两者都是复杂的句柄:

def is_number(s):
    try:
        complex(s) # for int, long, float and complex
    except ValueError:
        return False

    return True

之前说过:在一些罕见的情况下,您可能还需要检查复数(例如1+2i),这不能用浮点数表示:

def is_number(s):
    try:
        float(s) # for int, long and float
    except ValueError:
        try:
            complex(s) # for complex
        except ValueError:
            return False

    return True

其他回答

def is_float(s):
    if s is None:
        return False

    if len(s) == 0:
        return False

    digits_count = 0
    dots_count = 0
    signs_count = 0

    for c in s:
        if '0' <= c <= '9':
            digits_count += 1
        elif c == '.':
            dots_count += 1
        elif c == '-' or c == '+':
            signs_count += 1
        else:
            return False

    if digits_count == 0:
        return False

    if dots_count > 1:
        return False

    if signs_count > 1:
        return False

    return True

对于非数字字符串,请尝试:except:实际上比正则表达式慢。对于有效数字的字符串,正则表达式速度较慢。因此,适当的方法取决于您的输入。

如果您发现自己处于性能绑定中,可以使用名为fastnumbers的新第三方模块,该模块提供一个名为isfloat的函数。完全披露,我是作者。我已将其结果包含在以下时间中。


from __future__ import print_function
import timeit

prep_base = '''\
x = 'invalid'
y = '5402'
z = '4.754e3'
'''

prep_try_method = '''\
def is_number_try(val):
    try:
        float(val)
        return True
    except ValueError:
        return False

'''

prep_re_method = '''\
import re
float_match = re.compile(r'[-+]?\d*\.?\d+(?:[eE][-+]?\d+)?$').match
def is_number_re(val):
    return bool(float_match(val))

'''

fn_method = '''\
from fastnumbers import isfloat

'''

print('Try with non-number strings', timeit.timeit('is_number_try(x)',
    prep_base + prep_try_method), 'seconds')
print('Try with integer strings', timeit.timeit('is_number_try(y)',
    prep_base + prep_try_method), 'seconds')
print('Try with float strings', timeit.timeit('is_number_try(z)',
    prep_base + prep_try_method), 'seconds')
print()
print('Regex with non-number strings', timeit.timeit('is_number_re(x)',
    prep_base + prep_re_method), 'seconds')
print('Regex with integer strings', timeit.timeit('is_number_re(y)',
    prep_base + prep_re_method), 'seconds')
print('Regex with float strings', timeit.timeit('is_number_re(z)',
    prep_base + prep_re_method), 'seconds')
print()
print('fastnumbers with non-number strings', timeit.timeit('isfloat(x)',
    prep_base + 'from fastnumbers import isfloat'), 'seconds')
print('fastnumbers with integer strings', timeit.timeit('isfloat(y)',
    prep_base + 'from fastnumbers import isfloat'), 'seconds')
print('fastnumbers with float strings', timeit.timeit('isfloat(z)',
    prep_base + 'from fastnumbers import isfloat'), 'seconds')
print()

Try with non-number strings 2.39108395576 seconds
Try with integer strings 0.375686168671 seconds
Try with float strings 0.369210958481 seconds

Regex with non-number strings 0.748660802841 seconds
Regex with integer strings 1.02021503448 seconds
Regex with float strings 1.08564686775 seconds

fastnumbers with non-number strings 0.174362897873 seconds
fastnumbers with integer strings 0.179651021957 seconds
fastnumbers with float strings 0.20222902298 seconds

如你所见

try:except:对于数字输入很快,但对于无效输入很慢当输入无效时,正则表达式非常有效fastnumbers在这两种情况下都获胜

在浮点数的最常见情况下,我们希望处理整数和小数。让我们以字符串“1.1”为例。

我会尝试以下方法之一:

1.>isnumeric()

word = "1.1"

"".join(word.split(".")).isnumeric()
>>> True

2.>isdigit()

word = "1.1"

"".join(word.split(".")).isdigit()
>>> True

3.>isdecimal()

word = "1.1"

"".join(word.split(".")).isdecimal()
>>> True

速度:

► 所有上述方法具有相似的速度。

%timeit "".join(word.split(".")).isnumeric()
>>> 257 ns ± 12 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

%timeit "".join(word.split(".")).isdigit()
>>> 252 ns ± 11 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

%timeit "".join(word.split(".")).isdecimal()
>>> 244 ns ± 7.17 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

输入可能如下:

a=“50”b=50c=50.1d=“50.1”


1-一般输入:

这个函数的输入可以是一切!

查找给定变量是否为数字。数字字符串由可选符号、任意位数、可选小数部分和可选指数部分组成。因此,+0123.45e6是一个有效的数值。不允许使用十六进制(例如0xf4c3b000c)和二进制(例如0b10100111001)表示法。

is_numeric函数

import ast
import numbers              
def is_numeric(obj):
    if isinstance(obj, numbers.Number):
        return True
    elif isinstance(obj, str):
        nodes = list(ast.walk(ast.parse(obj)))[1:]
        if not isinstance(nodes[0], ast.Expr):
            return False
        if not isinstance(nodes[-1], ast.Num):
            return False
        nodes = nodes[1:-1]
        for i in range(len(nodes)):
            #if used + or - in digit :
            if i % 2 == 0:
                if not isinstance(nodes[i], ast.UnaryOp):
                    return False
            else:
                if not isinstance(nodes[i], (ast.USub, ast.UAdd)):
                    return False
        return True
    else:
        return False

测试:

>>> is_numeric("54")
True
>>> is_numeric("54.545")
True
>>> is_numeric("0x45")
True

is_float函数

查找给定变量是否为float。浮点数字符串由可选符号、任意数量的数字等组成。。。

import ast

def is_float(obj):
    if isinstance(obj, float):
        return True
    if isinstance(obj, int):
        return False
    elif isinstance(obj, str):
        nodes = list(ast.walk(ast.parse(obj)))[1:]
        if not isinstance(nodes[0], ast.Expr):
            return False
        if not isinstance(nodes[-1], ast.Num):
            return False
        if not isinstance(nodes[-1].n, float):
            return False
        nodes = nodes[1:-1]
        for i in range(len(nodes)):
            if i % 2 == 0:
                if not isinstance(nodes[i], ast.UnaryOp):
                    return False
            else:
                if not isinstance(nodes[i], (ast.USub, ast.UAdd)):
                    return False
        return True
    else:
        return False

测试:

>>> is_float("5.4")
True
>>> is_float("5")
False
>>> is_float(5)
False
>>> is_float("5")
False
>>> is_float("+5.4")
True

什么是ast?


2-如果您确信变量内容为字符串:

使用str.isdigit()方法

>>> a=454
>>> a.isdigit()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'int' object has no attribute 'isdigit'
>>> a="454"
>>> a.isdigit()
True

3-数字输入:

检测int值:

>>> isinstance("54", int)
False
>>> isinstance(54, int)
True
>>> 

检测浮子:

>>> isinstance("45.1", float)
False
>>> isinstance(45.1, float)
True

这篇文章已经有了很好的答案。我想给出一个稍微不同的观点。

我们可以对字母表进行否定搜索,而不是搜索数字、数字或浮点数。即,我们可以要求程序查看它是否不是字母表。

## Check whether it is not alpha rather than checking if it is digit
print(not "-1.2345".isalpha())
print(not "-1.2345e-10".isalpha())

如果你确定你的字符串是一个格式良好的数字(下面的条件1和条件2),它会很好地工作。但是,如果字符串错误地不是一个格式良好的数字,那么它将失败。在这种情况下,即使字符串不是有效的数字,它也会返回数字匹配。为了解决这种情况,必须有许多基于规则的方法。然而,此时此刻,我想起了正则表达式。以下是三个案例。请注意,正则表达式可以更好,因为我不是正则表达式专家。下面有两个列表:一个用于有效数字,一个用于无效数字。必须拾取有效数字,而不能拾取无效数字。

==条件1:确保字符串为有效数字,但未选择“inf”==

Valid_Numbers = ["1","-1","+1","0.0",".1","1.2345","-1.2345","+1.2345","1.2345e10","1.2345e-10","-1.2345e10","-1.2345E10","-inf"]
Invalid_Numbers = ["1.1.1","++1","--1","-1-1","1.23e10e5","--inf"]

################################ Condition 1: Valid number excludes 'inf' ####################################

Case_1_Positive_Result = list(map(lambda x: not x.isalpha(),Valid_Numbers))
print("The below must all be True")
print(Case_1_Positive_Result)

## This check assumes a valid number. So it fails for the negative cases and wrongly detects string as number
Case_1_Negative_Result = list(map(lambda x: not x.isalpha(),Invalid_Numbers))
print("The below must all be False")
print(Case_1_Negative_Result)
The below must all be True
[True, True, True, True, True, True, True, True, True, True, True, True, True]
The below must all be False
[True, True, True, True, True, True]

==条件2:确保字符串为有效数字,并选择“inf”==

################################ Condition 2: Valid number includes 'inf'  ###################################
Case_2_Positive_Result = list(map(lambda x: x=="inf" or not x.isalpha(),Valid_Numbers+["inf"]))
print("The below must all be True")
print(Case_2_Positive_Result)

## This check assumes a valid number. So it fails for the negative cases and wrongly detects string as number
Case_2_Negative_Result = list(map(lambda x: x=="inf" or not x.isalpha(),Invalid_Numbers+["++inf"]))
print("The below must all be False")
print(Case_2_Negative_Result)
The below must all be True
[True, True, True, True, True, True, True, True, True, True, True, True, True, True]
The below must all be False
[True, True, True, True, True, True, True]

==条件3:字符串不保证是有效数字==

import re
CompiledPattern = re.compile(r"([+-]?(inf){1}$)|([+-]?[0-9]*\.?[0-9]*$)|([+-]?[0-9]*\.?[0-9]*[eE]{1}[+-]?[0-9]*$)")
Case_3_Positive_Result = list(map(lambda x: True if CompiledPattern.match(x) else False,Valid_Numbers+["inf"]))
print("The below must all be True")
print(Case_3_Positive_Result)

## This check assumes a valid number. So it fails for the negative cases and wrongly detects string as number
Case_3_Negative_Result = list(map(lambda x: True if CompiledPattern.match(x) else False,Invalid_Numbers+["++inf"]))
print("The below must all be False")
print(Case_3_Negative_Result)
The below must all be True
[True, True, True, True, True, True, True, True, True, True, True, True, True, True]
The below must all be False
[False, False, False, False, False, False, False]