如何在Python中检查字符串是否表示数值?

def is_number(s):
    try:
        float(s)
        return True
    except ValueError:
        return False

上述方法可行,但似乎很笨拙。


如果您正在测试的内容来自用户输入,那么即使它表示int或float,它仍然是一个字符串。请参阅如何将输入读取为数字?用于转换输入,并询问用户输入,直到他们给出有效响应以确保输入在继续之前表示int或float(或其他要求)。


当前回答

通过返回比True和False更有用的值,可以以有用的方式概括异常技术。例如,此函数将引号放在字符串周围,但不使用数字。这正是我需要的快速而肮脏的过滤器来为R定义一些变量。

import sys

def fix_quotes(s):
    try:
        float(s)
        return s
    except ValueError:
        return '"{0}"'.format(s)

for line in sys.stdin:
    input = line.split()
    print input[0], '<- c(', ','.join(fix_quotes(c) for c in input[1:]), ')'

其他回答

这不仅是丑陋和缓慢的,而且显得笨拙。

这可能需要一些时间来适应,但这是一种蟒蛇式的方式。正如已经指出的那样,替代方案更糟糕。但这样做还有一个好处:多态性。

duck类型背后的核心思想是“如果它像鸭子一样走路和说话,那么它就是鸭子。”如果您决定需要对字符串进行子类化,这样您就可以更改确定某个对象是否可以转换为float的方式,该怎么办?或者如果你决定完全测试其他对象呢?您可以在不必更改上述代码的情况下执行这些操作。

其他语言通过使用接口来解决这些问题。我将保存对哪个解决方案更适合另一个线程的分析。不过,重点是python显然是在公式中的鸭子类型方面,如果你打算用python进行大量编程,你可能必须习惯这样的语法(但这并不意味着你当然要喜欢它)。

还有一点您可能需要考虑:与许多其他语言相比,Python在抛出和捕获异常方面非常快(例如,比.Net快30倍)。见鬼,语言本身甚至抛出异常来传达非异常的正常程序条件(每次使用for循环时)。因此,在您注意到一个重大问题之前,我不会太担心这段代码的性能方面。

您可能需要考虑一个例外:字符串“NaN”

如果您希望is_number为“NaN”返回FALSE,则此代码将无法工作,因为Python将其转换为非数字的数字表示(请讨论身份问题):

>>> float('NaN')
nan

否则,我应该感谢您现在广泛使用的这段代码

G.

强制转换为float并捕获ValueError可能是最快的方法,因为float()专门用于此。任何其他需要字符串解析(正则表达式等)的操作都可能会比较慢,因为它没有针对该操作进行调整。我的0.02美元。

使用以下方法处理所有情况:-

import re
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' ,  '2.3') 
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' ,  '2.')
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' ,  '.3')
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' ,  '2.3sd')
a=re.match('((\d+[\.]\d*$)|(\.)\d+$)' ,  '2.3')

我认为您的解决方案很好,但有一个正确的正则表达式实现。

对于这些答案,似乎有很多正则表达式的仇恨,我认为这是不合理的,正则表达式可以相当干净、正确和快速。这真的取决于你想做什么。最初的问题是如何“检查字符串是否可以表示为数字(浮点数)”(根据你的标题)。在检查了数值/浮点值是否有效后,您可能希望使用它,在这种情况下,try/except非常有意义。但是,如果出于某种原因,您只想验证字符串是数字,那么正则表达式也可以正常工作,但很难得到正确的结果。例如,我认为到目前为止,大多数正则表达式的答案都不能正确解析没有整数部分(如“.7”)的字符串,就python而言,整数部分是一个浮点数。在不需要小数部分的单个正则表达式中检查这一点有点困难。我包含了两个正则表达式来显示这一点。

它确实提出了一个有趣的问题,即“数字”是什么。您是否包含“inf”,它在python中作为浮点数有效?或者您是否包含“数字”但可能无法在python中表示的数字(例如大于float max的数字)。

解析数字的方式也存在歧义。例如,“--20”呢?这是一个“数字”吗?这是代表“20”的合法方式吗?Python将允许您执行“var=--20”并将其设置为20(尽管实际上这是因为它将其作为表达式处理),但float(“--20”)不起作用。

无论如何,在没有更多信息的情况下,这里有一个正则表达式,我相信它涵盖了python解析它们时的所有int和float。

# Doesn't properly handle floats missing the integer part, such as ".7"
SIMPLE_FLOAT_REGEXP = re.compile(r'^[-+]?[0-9]+\.?[0-9]+([eE][-+]?[0-9]+)?$')
# Example "-12.34E+56"      # sign (-)
                            #     integer (12)
                            #           mantissa (34)
                            #                    exponent (E+56)

# Should handle all floats
FLOAT_REGEXP = re.compile(r'^[-+]?([0-9]+|[0-9]*\.[0-9]+)([eE][-+]?[0-9]+)?$')
# Example "-12.34E+56"      # sign (-)
                            #     integer (12)
                            #           OR
                            #             int/mantissa (12.34)
                            #                            exponent (E+56)

def is_float(str):
  return True if FLOAT_REGEXP.match(str) else False

一些示例测试值:

True  <- +42
True  <- +42.42
False <- +42.42.22
True  <- +42.42e22
True  <- +42.42E-22
False <- +42.42e-22.8
True  <- .42
False <- 42nope

在@ron reiter的回答中运行基准测试代码表明,这个正则表达式实际上比普通正则表达式快,并且在处理错误值方面比异常快得多,这是有道理的。结果:

check_regexp with good floats: 18.001921
check_regexp with bad floats: 17.861423
check_regexp with strings: 17.558862
check_correct_regexp with good floats: 11.04428
check_correct_regexp with bad floats: 8.71211
check_correct_regexp with strings: 8.144161
check_replace with good floats: 6.020597
check_replace with bad floats: 5.343049
check_replace with strings: 5.091642
check_exception with good floats: 5.201605
check_exception with bad floats: 23.921864
check_exception with strings: 23.755481