是否有一种方法可以方便地在Python中定义类c结构?我厌倦了写这样的东西:

class MyStruct():
    def __init__(self, field1, field2, field3):
        self.field1 = field1
        self.field2 = field2
        self.field3 = field3

当前回答

有一个python包正是用于此目的。看到cstruct2py

cstruct2py是一个纯python库,用于从C代码生成python类,并使用它们来打包和解包数据。该库可以解析C头文件(结构体、联合、枚举和数组声明),并在python中模拟它们。生成的python类可以解析和打包数据。

例如:

typedef struct {
  int x;
  int y;
} Point;

after generating pythonic class...
p = Point(x=0x1234, y=0x5678)
p.packed == "\x34\x12\x00\x00\x78\x56\x00\x00"

如何使用

首先,我们需要生成python结构体:

import cstruct2py
parser = cstruct2py.c2py.Parser()
parser.parse_file('examples/example.h')

现在我们可以从C代码中导入所有的名称:

parser.update_globals(globals())

我们也可以直接这样做:

A = parser.parse_string('struct A { int x; int y;};')

使用C代码中的类型和定义

a = A()
a.x = 45
print a
buf = a.packed
b = A(buf)
print b
c = A('aaaa11112222', 2)
print c
print repr(c)

输出将是:

{'x':0x2d, 'y':0x0}
{'x':0x2d, 'y':0x0}
{'x':0x31316161, 'y':0x32323131}
A('aa111122', x=0x31316161, y=0x32323131)

克隆

对于克隆cstruct2py运行:

git clone https://github.com/st0ky/cstruct2py.git --recursive

其他回答

这里的一些答案非常详尽。我找到的最简单的选项是(from: http://norvig.com/python-iaq.html):)

class Struct:
    "A structure that can have any fields defined."
    def __init__(self, **entries): self.__dict__.update(entries)

初始化:

>>> options = Struct(answer=42, linelen=80, font='courier')
>>> options.answer
42

添加更多的:

>>> options.cat = "dog"
>>> options.cat
dog

编辑:对不起,没有看到这个例子已经进一步。

NamedTuple很舒服。但是没有人共享性能和存储。

from typing import NamedTuple
import guppy  # pip install guppy
import timeit


class User:
    def __init__(self, name: str, uid: int):
        self.name = name
        self.uid = uid


class UserSlot:
    __slots__ = ('name', 'uid')

    def __init__(self, name: str, uid: int):
        self.name = name
        self.uid = uid


class UserTuple(NamedTuple):
    # __slots__ = ()  # AttributeError: Cannot overwrite NamedTuple attribute __slots__
    name: str
    uid: int


def get_fn(obj, attr_name: str):
    def get():
        getattr(obj, attr_name)
    return get
if 'memory test':
    obj = [User('Carson', 1) for _ in range(1000000)]      # Cumulative: 189138883
    obj_slot = [UserSlot('Carson', 1) for _ in range(1000000)]          # 77718299  <-- winner
    obj_namedtuple = [UserTuple('Carson', 1) for _ in range(1000000)]   # 85718297
    print(guppy.hpy().heap())  # Run this function individually. 
    """
    Index  Count   %     Size   % Cumulative  % Kind (class / dict of class)
     0 1000000    24 112000000 34 112000000  34 dict of __main__.User
     1 1000000    24 64000000  19 176000000  53 __main__.UserTuple
     2 1000000    24 56000000  17 232000000  70 __main__.User
     3 1000000    24 56000000  17 288000000  87 __main__.UserSlot
     ...
    """

if 'performance test':
    obj = User('Carson', 1)
    obj_slot = UserSlot('Carson', 1)
    obj_tuple = UserTuple('Carson', 1)

    time_normal = min(timeit.repeat(get_fn(obj, 'name'), repeat=20))
    print(time_normal)  # 0.12550550000000005

    time_slot = min(timeit.repeat(get_fn(obj_slot, 'name'), repeat=20))
    print(time_slot)  # 0.1368690000000008

    time_tuple = min(timeit.repeat(get_fn(obj_tuple, 'name'), repeat=20))
    print(time_tuple)  # 0.16006120000000124

    print(time_tuple/time_slot)  # 1.1694481584580898  # The slot is almost 17% faster than NamedTuple on Windows. (Python 3.7.7)

如果你的__dict__没有被使用,请在__slots__(更高的性能和存储)和NamedTuple(清晰的阅读和使用)之间选择。

您可以查看此链接(插槽的使用 )来获取更多的__slots__信息。

就我个人而言,我也喜欢这种变体。它扩展了@dF的答案。

class struct:
    def __init__(self, *sequential, **named):
        fields = dict(zip(sequential, [None]*len(sequential)), **named)
        self.__dict__.update(fields)
    def __repr__(self):
        return str(self.__dict__)

它支持两种初始化模式(可以混合使用):

# Struct with field1, field2, field3 that are initialized to None.
mystruct1 = struct("field1", "field2", "field3") 
# Struct with field1, field2, field3 that are initialized according to arguments.
mystruct2 = struct(field1=1, field2=2, field3=3)

而且,它打印得更好:

print(mystruct2)
# Prints: {'field3': 3, 'field1': 1, 'field2': 2}

更新:数据类

随着Python 3.7中数据类的引入,我们已经非常接近了。

下面的示例与下面的NamedTuple示例类似,但是生成的对象是可变的,并且允许使用默认值。

from dataclasses import dataclass


@dataclass
class Point:
    x: float
    y: float
    z: float = 0.0


p = Point(1.5, 2.5)

print(p)  # Point(x=1.5, y=2.5, z=0.0)

如果您想使用更特定的类型注释,这可以很好地配合新的类型模块。

我一直在绝望地等待这一刻!要我说,Data Classes和新的NamedTuple声明,再加上typing模块,简直就是天赐之物!

改进的NamedTuple声明

自从Python 3.6以来,它变得非常简单和美丽(恕我直言),只要你能忍受不变性。

引入了一种声明NamedTuples的新方法,它也允许类型注释:

from typing import NamedTuple


class User(NamedTuple):
    name: str


class MyStruct(NamedTuple):
    foo: str
    bar: int
    baz: list
    qux: User


my_item = MyStruct('foo', 0, ['baz'], User('peter'))

print(my_item) # MyStruct(foo='foo', bar=0, baz=['baz'], qux=User(name='peter'))

使用命名元组,该元组被添加到Python 2.6标准库中的collections模块中。如果你需要支持Python 2.4,也可以使用Raymond Hettinger的命名元组配方。

它适用于基本示例,但也适用于稍后可能遇到的一些边缘情况。你上面的片段可以写成:

from collections import namedtuple
MyStruct = namedtuple("MyStruct", "field1 field2 field3")

新创建的类型可以这样使用:

m = MyStruct("foo", "bar", "baz")

你也可以使用命名参数:

m = MyStruct(field1="foo", field2="bar", field3="baz")