我发现它更方便访问字典键作为obj。foo而不是obj['foo'],所以我写了这个片段:

class AttributeDict(dict):
    def __getattr__(self, attr):
        return self[attr]
    def __setattr__(self, attr, value):
        self[attr] = value

然而,我认为一定有一些原因,Python没有提供开箱即用的功能。以这种方式访问字典键的注意事项和缺陷是什么?


当前回答

更新- 2020年

自从这个问题在大约十年前被提出以来,Python本身已经发生了相当大的变化。

虽然我最初回答中的方法在某些情况下仍然有效,(例如,遗留项目坚持使用旧版本的Python,以及在某些情况下,您确实需要处理具有非常动态字符串键的字典),但我认为一般来说,Python 3.7中引入的数据类是AttrDict绝大多数用例的明显/正确的解决方案。

原来的答案

最好的方法是:

class AttrDict(dict):
    def __init__(self, *args, **kwargs):
        super(AttrDict, self).__init__(*args, **kwargs)
        self.__dict__ = self

一些优点:

它真的有用! 没有字典类方法被遮蔽(例如.keys()工作得很好。除非-当然-你给它们赋值,见下文) 属性和项总是同步的 试图将不存在的key作为属性访问会正确地引发AttributeError而不是KeyError 支持[Tab]自动补全(例如在jupyter和ipython中)

缺点:

如果.keys()等方法被传入的数据覆盖,它们就不能正常工作 在Python < 2.7.4 / Python3 < 3.2.3中导致内存泄漏 Pylint因为E1123(意外关键字参数)和E1103(可能没有成员)而抓狂 对于外行来说,这似乎是纯粹的魔法。

简要解释一下它是如何工作的

All python objects internally store their attributes in a dictionary that is named __dict__. There is no requirement that the internal dictionary __dict__ would need to be "just a plain dict", so we can assign any subclass of dict() to the internal dictionary. In our case we simply assign the AttrDict() instance we are instantiating (as we are in __init__). By calling super()'s __init__() method we made sure that it (already) behaves exactly like a dictionary, since that function calls all the dictionary instantiation code.

Python没有开箱即用提供此功能的原因之一

正如“cons”列表中所指出的,这将存储键的名称空间(可能来自任意和/或不受信任的数据!)与内置dict方法属性的名称空间结合在一起。例如:

d = AttrDict()
d.update({'items':["jacket", "necktie", "trousers"]})
for k, v in d.items():    # TypeError: 'list' object is not callable
    print "Never reached!"

其他回答

从另一个SO问题中,有一个很好的实现示例,可以简化现有的代码。如何:

class AttributeDict(dict):
    __slots__ = () 
    __getattr__ = dict.__getitem__
    __setattr__ = dict.__setitem__

更加简洁,并且不会为将来的__getattr__和__setattr__函数留下任何额外的麻烦空间。

我发现自己想知道python生态系统中“字典键作为attr”的当前状态。正如一些评论者所指出的,这可能不是你想要从头开始的东西,因为有几个陷阱和脚枪,其中一些非常微妙。此外,我不建议使用Namespace作为基类,我已经走上了那条路,它并不漂亮。

幸运的是,有几个开源包提供了这个功能,可以安装了!不幸的是,有几个包。以下是截至2019年12月的概要。

竞争者(最近提交到|#提交|#投稿|覆盖率%):

上瘾者(2021-01-05 | 229 | | 100%)22 蒙克(2021-01-22 | 166 | 17 | ?) easydict (2021-02-28 | 54 | 7% | ?) attrdict(| 108 | 5 |地址:100%) prodict (2021-03-06 | 100 | 2 | ?)

不再保养或保养不足:

treedict (2014-03-28 | 95 | 2 | ?) bunch (2012-03-12 | 20% | 2 | ?) NeoBunch

目前我推荐咀嚼或上瘾。它们拥有最多的提交、贡献者和发布,这意味着它们都有一个健康的开源代码库。他们有最干净的自述。Md, 100%的覆盖率,以及一组好看的测试。

我在这场比赛中没有一只狗(现在!),除了滚动我自己的dict/attr代码,浪费了大量的时间,因为我不知道所有这些选项:)。我可能会在未来贡献给addict/munch,因为我宁愿看到一个完整的包,而不是一堆碎片化的包。如果你喜欢它们,就投稿吧!特别是,看起来munch可以使用codecov徽章,addict可以使用python版本徽章。

瘾君子优点:

递归初始化(foo.a.b.c = 'bar'),类字典参数成为成瘾。Dict

成瘾的缺点:

阴影打字。词典,如果你从成瘾进口词典 不检查密钥。由于允许递归init,如果你拼错了一个键,你只是创建一个新属性,而不是KeyError(感谢AljoSt)

蒙克优点:

独特的命名 内置的JSON和YAML的ser/de函数

蒙克缺点:

没有递归初始化(你不能构造foo.a.b.c = 'bar',你必须设置foo.a.b.c = 'bar')。A,然后foo, A。b等。

其中我发表评论

Many moons ago, when I used text editors to write python, on projects with only myself or one other dev, I liked the style of dict-attrs, the ability to insert keys by just declaring foo.bar.spam = eggs. Now I work on teams, and use an IDE for everything, and I have drifted away from these sorts of data structures and dynamic typing in general, in favor of static analysis, functional techniques and type hints. I've started experimenting with this technique, subclassing Pstruct with objects of my own design:

class  BasePstruct(dict):
    def __getattr__(self, name):
        if name in self.__slots__:
            return self[name]
        return self.__getattribute__(name)

    def __setattr__(self, key, value):
        if key in self.__slots__:
            self[key] = value
            return
        if key in type(self).__dict__:
            self[key] = value
            return
        raise AttributeError(
            "type object '{}' has no attribute '{}'".format(type(self).__name__, key))


class FooPstruct(BasePstruct):
    __slots__ = ['foo', 'bar']

This gives you an object which still behaves like a dict, but also lets you access keys like attributes, in a much more rigid fashion. The advantage here is I (or the hapless consumers of your code) know exactly what fields can and can't exist, and the IDE can autocomplete fields. Also subclassing vanilla dict means json serialization is easy. I think the next evolution in this idea would be a custom protobuf generator which emits these interfaces, and a nice knock-on is you get cross-language data structures and IPC via gRPC for nearly free.

如果您决定使用attrt -dicts,那么为了您自己(和您的队友)的理智,有必要记录期望哪些字段。

请随意编辑/更新这篇文章,以保持它的最新!

很抱歉再添加一个,但这一个解决了subdicts和纠正AttributeError,尽管非常简单:

class DotDict(dict):
    def __init__(self, d: dict = {}):
        super().__init__()
        for key, value in d.items():
            self[key] = DotDict(value) if type(value) is dict else value
    
    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError(key) #Set proper exception, not KeyError

    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

最简单的方法是定义一个类,我们称之为Namespace。在字典上使用对象dict.update()。然后,字典将被视为一个对象。

class Namespace(object):
    '''
    helps referencing object in a dictionary as dict.key instead of dict['key']
    '''
    def __init__(self, adict):
        self.__dict__.update(adict)



Person = Namespace({'name': 'ahmed',
                     'age': 30}) #--> added for edge_cls


print(Person.name)

如果使用数组表示法,则可以将所有合法字符串字符作为键的一部分。 例如,obj['!#$%^&*()_']