地图提供商(如谷歌或Yahoo!地图)指示方向?

I mean, they probably have real-world data in some form, certainly including distances but also perhaps things like driving speeds, presence of sidewalks, train schedules, etc. But suppose the data were in a simpler format, say a very large directed graph with edge weights reflecting distances. I want to be able to quickly compute directions from one arbitrary point to another. Sometimes these points will be close together (within one city) while sometimes they will be far apart (cross-country).

Graph algorithms like Dijkstra's algorithm will not work because the graph is enormous. Luckily, heuristic algorithms like A* will probably work. However, our data is very structured, and perhaps some kind of tiered approach might work? (For example, store precomputed directions between certain "key" points far apart, as well as some local directions. Then directions for two far-away points will involve local directions to a key points, global directions to another key point, and then local directions again.)

实践中实际使用的算法是什么?

PS:这个问题的动机是发现在线地图方向的怪癖。与三角形不等式相反,有时谷歌Maps认为X-Z比使用中间点(如X-Y-Z)花费的时间更长,距离更远。但也许他们的行走方向也会优化另一个参数?

pp。这是对三角不等式的另一个违反,这表明(对我来说)他们使用了某种分层方法:X-Z vs X-Y-Z。前者似乎使用了著名的塞瓦斯托波尔大道(Boulevard de Sebastopol),尽管它有点偏僻。

编辑:这两个例子似乎都不起作用了,但在最初的帖子发布时都起作用了。


当前回答

全对最短路径算法将计算图中所有顶点之间的最短路径。这将允许预先计算路径,而不需要每次寻找源和目的地之间的最短路径时都计算路径。Floyd-Warshall算法是一种全对最短路径算法。

其他回答

只是解决三角形不等式的违反,希望他们优化的额外因素是常识。你不一定想要最短或最快的路线,因为这可能会导致混乱和破坏。如果你想让自己的路线更适合卡车行驶,并且能够应对每个卫星导航跟踪司机都沿着这些路线行驶的情况,那么你很快就可以放弃三角形不等式[1]。

如果Y是X和Z之间的一条狭窄的住宅街道,那么您可能只想在用户明确要求X-Y-Z时使用通过Y的快捷方式。如果他们要求X-Z,他们应该坚持走主干道,即使它有点远,需要更长的时间。这类似于Braess悖论——如果每个人都试图选择最短、最快的路线,那么随之而来的拥堵意味着这条路线不再是任何人最快的路线。从这里开始,我们将从图论转向博弈论。

事实上,当你允许单向道路并失去对称性要求时,任何产生的距离将是数学意义上的距离函数的希望都将破灭。失去三角不等式也只是在伤口上撒盐。

这纯粹是我的猜测,但我认为他们可能会使用覆盖有向图的影响图数据结构,以缩小搜索域。这将允许搜索算法在所需行程较长时将路径导向主要路线。

鉴于这是一个谷歌应用程序,我们也可以合理地假设,许多神奇的功能都是通过大量缓存完成的。如果缓存前5%最常见的谷歌地图路由请求,我不会感到惊讶(20%?50%?)的请求需要通过简单的查询来回答。

全对最短路径算法将计算图中所有顶点之间的最短路径。这将允许预先计算路径,而不需要每次寻找源和目的地之间的最短路径时都计算路径。Floyd-Warshall算法是一种全对最短路径算法。

我有点惊讶这里没有提到Floyd Warshall的算法。这个算法很像Dijkstra算法。它还有一个很好的特性,那就是它允许你计算,只要你想继续允许更多的中间顶点。因此,它自然会很快找到使用州际公路或高速公路的路线。

我已经在路由方面工作了几年,最近由于客户的需求而引起了大量的活动,我发现a *很容易就足够快了;真的没有必要去寻找优化或更复杂的算法。在一个巨大的图上路由不是问题。

但是速度取决于整个路由网络,我指的是在内存中分别表示路由段和节点的有向图。主要的时间开销是创建这个网络所花费的时间。基于一台运行Windows系统的普通笔记本电脑,并在整个西班牙进行路由的一些粗略数字:创建网络所需时间:10-15秒;计算路线所花费的时间:太短而无法测量。

The other important thing is to be able to re-use the network for as many routing calculations as you like. If your algorithm has marked the nodes in some way to record the best route (total cost to current node, and best arc to it) - as it has to in A* - you have to reset or clear out this old information. Rather than going through hundreds of thousands of nodes, it's easier to use a generation number system. Mark each node with the generation number of its data; increment the generation number when you calculate a new route; any node with an older generation number is stale and its information can be ignored.