我想将两个词典融入一个新的词典。

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)

>>> z
{'a': 1, 'b': 3, 'c': 4}

每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。


当前回答

在您的情况下,您可以:

z = dict(list(x.items()) + list(y.items()))

因此,如您所需,将最终定位定位为z,并使关键b的值由第二(y)定位的值正确上调:

>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> z = dict(list(x.items()) + list(y.items()))
>>> z
{'a': 1, 'c': 11, 'b': 10}

如果您使用 Python 2, 您甚至可以删除列表() 通话。

>>> z = dict(x.items() + y.items())
>>> z
{'a': 1, 'c': 11, 'b': 10}

如果您使用 Python 版本 3.9.0a4 或更高版本,则可以直接使用:

x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
z = x | y
print(z)
{'a': 1, 'c': 11, 'b': 10}

其他回答

在 Python 3.9 中

基于PEP 584的,Python的新版本引入了两个新的词典操作器:union(<unk>)和in-place union(<unk>=)。您可以使用<unk>来结合两个词典,而<unk>=将更新一个词典:

>>> pycon = {2016: "Portland", 2018: "Cleveland"}
>>> europython = {2017: "Rimini", 2018: "Edinburgh", 2019: "Basel"}

>>> pycon | europython
{2016: 'Portland', 2018: 'Edinburgh', 2017: 'Rimini', 2019: 'Basel'}

>>> pycon |= europython
>>> pycon
{2016: 'Portland', 2018: 'Edinburgh', 2017: 'Rimini', 2019: 'Basel'}

使用<unk>的优点之一是它在不同的字典类型上工作,并通过合并保持类型:

>>> from collections import defaultdict
>>> europe = defaultdict(lambda: "", {"Norway": "Oslo", "Spain": "Madrid"})
>>> africa = defaultdict(lambda: "", {"Egypt": "Cairo", "Zimbabwe": "Harare"})

>>> europe | africa
defaultdict(<function <lambda> at 0x7f0cb42a6700>,
  {'Norway': 'Oslo', 'Spain': 'Madrid', 'Egypt': 'Cairo', 'Zimbabwe': 'Harare'})

>>> {**europe, **africa}
{'Norway': 'Oslo', 'Spain': 'Madrid', 'Egypt': 'Cairo', 'Zimbabwe': 'Harare'}

您可以使用默认定义,当您想要有效处理丢失的密钥时,请注意, <unk> 保留默认定义,而 {**europe, **africa} 不。

基本用途是更新现有字典,类似于.update():

>>> libraries = {
...     "collections": "Container datatypes",
...     "math": "Mathematical functions",
... }
>>> libraries |= {"zoneinfo": "IANA time zone support"}
>>> libraries
{'collections': 'Container datatypes', 'math': 'Mathematical functions',
 'zoneinfo': 'IANA time zone support'}

当您将字典与字典合并时,两个字典都必须具有适当的字典类型,另一方面,现场运营商(字典=)很高兴与任何字典类似的数据结构合作:

>>> libraries |= [("graphlib", "Functionality for graph-like structures")]
>>> libraries
{'collections': 'Container datatypes', 'math': 'Mathematical functions',
 'zoneinfo': 'IANA time zone support',
 'graphlib': 'Functionality for graph-like structures'}

如果你不想转动X,

x.update(y) or x

(x.update(y), x)[-1]

如果你还没有X在变量,你可以使用Lambda做一个地方,而不使用任务声明,这意味着使用Lambda作为一个Let表达,这是一个常见的技术在功能语言,但可能是无神论的。

(lambda x: x.update(y) or x)({'a': 1, 'b': 2})

(x := {'a': 1, 'b': 2}).update(y) or x

(lambda x={'a': 1, 'b': 2}: x.update(y) or x)()

如果你想要一个副本,PEP 584 风格 x <unk> y 是最 Pythonic 的 3.9+. 如果你需要支持更古老的版本,PEP 448 风格 {**x, **y} 是最容易的 3.5+. 但如果它不在你的(甚至更古老的) Python 版本,让表达模式也在这里工作。

(lambda z=x.copy(): z.update(y) or z)()

(当然,这可能相当于(z := x.copy())。更新(y)或z,但如果您的Python版本足够新,那么PEP 448风格将可用。

深深的定律:

from typing import List, Dict
from copy import deepcopy

def merge_dicts(*from_dicts: List[Dict], no_copy: bool=False) -> Dict :
    """ no recursion deep merge of two dicts

    By default creates fresh Dict and merges all to it.

    no_copy = True, will merge all dicts to a fist one in a list without copy.
    Why? Sometime I need to combine one dictionary from "layers".
    The "layers" are not in use and dropped immediately after merging.
    """

    if no_copy:
        xerox = lambda x:x
    else:
        xerox = deepcopy

    result = xerox(from_dicts[0])

    for _from in from_dicts[1:]:
        merge_queue = [(result, _from)]
        for _to, _from in merge_queue:
            for k, v in _from.items():
                if k in _to and isinstance(_to[k], dict) and isinstance(v, dict):
                    # key collision add both are dicts.
                    # add to merging queue
                    merge_queue.append((_to[k], v))
                    continue
                _to[k] = xerox(v)

    return result

使用:

print("=============================")
print("merge all dicts to first one without copy.")
a0 = {"a":{"b":1}}
a1 = {"a":{"c":{"d":4}}}
a2 = {"a":{"c":{"f":5}, "d": 6}}
print(f"a0 id[{id(a0)}] value:{a0}")
print(f"a1 id[{id(a1)}] value:{a1}")
print(f"a2 id[{id(a2)}] value:{a2}")
r = merge_dicts(a0, a1, a2, no_copy=True)
print(f"r  id[{id(r)}] value:{r}")

print("=============================")
print("create fresh copy of all")
a0 = {"a":{"b":1}}
a1 = {"a":{"c":{"d":4}}}
a2 = {"a":{"c":{"f":5}, "d": 6}}
print(f"a0 id[{id(a0)}] value:{a0}")
print(f"a1 id[{id(a1)}] value:{a1}")
print(f"a2 id[{id(a2)}] value:{a2}")
r = merge_dicts(a0, a1, a2)
print(f"r  id[{id(r)}] value:{r}")

在Python3中,项目方法不再返回一个列表,而是一个视图,它像一个集一样作用。

dict(x.items() | y.items())

dict(x.viewitems() | y.viewitems())

编辑:

首先,请注意,在 Python 3 中, dic(x、 **y) 技巧不会工作,除非 y 中的键是线条。

此外,Raymond Hettinger的链路图答案是相当优雅的,因为它可以作为论点采取任意数量的论点,但从论点看起来它顺序地通过每个搜索的所有论点的列表:

In [1]: from collections import ChainMap
In [2]: from string import ascii_uppercase as up, ascii_lowercase as lo; x = dict(zip(lo, up)); y = dict(zip(up, lo))
In [3]: chainmap_dict = ChainMap(y, x)
In [4]: union_dict = dict(x.items() | y.items())
In [5]: timeit for k in union_dict: union_dict[k]
100000 loops, best of 3: 2.15 µs per loop
In [6]: timeit for k in chainmap_dict: chainmap_dict[k]
10000 loops, best of 3: 27.1 µs per loop

我是 Chainmap 的粉丝,但看起来不太实用,在那里可能有很多搜索。

我想要一些类似的东西,但有能力说明双键中的值是如何合并的,所以我打破了这个(但没有重量测试)。

def merge(d1, d2, merge_fn=lambda x,y:y):
    """
    Merges two dictionaries, non-destructively, combining 
    values on duplicate keys as defined by the optional merge
    function.  The default behavior replaces the values in d1
    with corresponding values in d2.  (There is no other generally
    applicable merge strategy, but often you'll have homogeneous 
    types in your dicts, so specifying a merge technique can be 
    valuable.)

    Examples:

    >>> d1
    {'a': 1, 'c': 3, 'b': 2}
    >>> merge(d1, d1)
    {'a': 1, 'c': 3, 'b': 2}
    >>> merge(d1, d1, lambda x,y: x+y)
    {'a': 2, 'c': 6, 'b': 4}

    """
    result = dict(d1)
    for k,v in d2.iteritems():
        if k in result:
            result[k] = merge_fn(result[k], v)
        else:
            result[k] = v
    return result