我想将两个词典融入一个新的词典。
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)
>>> z
{'a': 1, 'b': 3, 'c': 4}
每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。
我想将两个词典融入一个新的词典。
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)
>>> z
{'a': 1, 'b': 3, 'c': 4}
每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。
当前回答
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
z = dict(x.items() + y.items())
print z
对于两个字典中的关键物品(“b”),您可以通过将最后一个放在输出中来控制哪个。
其他回答
2 词典
def union2(dict1, dict2):
return dict(list(dict1.items()) + list(dict2.items()))
n 字典
def union(*dicts):
return dict(itertools.chain.from_iterable(dct.items() for dct in dicts))
查看 https://mathieularose.com/how-not-to-flatten-a-list-of-lists-in-python/
z = MergeDict(x, y)
当使用这个新对象时,它将像合并词典一样行事,但它将有持续的创作时间和持续的记忆脚印,同时让原始词典无触摸。
当然,如果你使用结果很多,那么你会在某个时候达到创建一个真正的合并词典会是最快的解决方案的界限。
a = { 'x': 3, 'y': 4 }
b = MergeDict(a) # we merge just one dict
b['x'] = 5
print b # will print {'x': 5, 'y': 4}
print a # will print {'y': 4, 'x': 3}
class MergeDict(object):
def __init__(self, *originals):
self.originals = ({},) + originals[::-1] # reversed
def __getitem__(self, key):
for original in self.originals:
try:
return original[key]
except KeyError:
pass
raise KeyError(key)
def __setitem__(self, key, value):
self.originals[0][key] = value
def __iter__(self):
return iter(self.keys())
def __repr__(self):
return '%s(%s)' % (
self.__class__.__name__,
', '.join(repr(original)
for original in reversed(self.originals)))
def __str__(self):
return '{%s}' % ', '.join(
'%r: %r' % i for i in self.iteritems())
def iteritems(self):
found = set()
for original in self.originals:
for k, v in original.iteritems():
if k not in found:
yield k, v
found.add(k)
def items(self):
return list(self.iteritems())
def keys(self):
return list(k for k, _ in self.iteritems())
def values(self):
return list(v for _, v in self.iteritems())
最好的版本我可以想象,而不使用复制将是:
from itertools import chain
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
dict(chain(x.iteritems(), y.iteritems()))
它比 dict(x.items() + y.items()) 更快,但不像 n = copy(a); n.update(b),至少在 CPython 上。
我个人最喜欢这个版本,因为它在一个单一的功能合成中描述了我想要的东西相当好,唯一的小问题是,它并不完全显而易见,Y的值超过X的值,但我不认为很难找到它。
重复 / 深度更新 a dict
def deepupdate(original, update):
"""
Recursively update a dict.
Subdict's won't be overwritten but also updated.
"""
for key, value in original.iteritems():
if key not in update:
update[key] = value
elif isinstance(value, dict):
deepupdate(value, update[key])
return update
示威:
pluto_original = {
'name': 'Pluto',
'details': {
'tail': True,
'color': 'orange'
}
}
pluto_update = {
'name': 'Pluutoo',
'details': {
'color': 'blue'
}
}
print deepupdate(pluto_original, pluto_update)
结果:
{
'name': 'Pluutoo',
'details': {
'color': 'blue',
'tail': True
}
}
谢谢Radnaw的编辑。
在 Python 3.9 中
基于PEP 584的,Python的新版本引入了两个新的词典操作器:union(<unk>)和in-place union(<unk>=)。您可以使用<unk>来结合两个词典,而<unk>=将更新一个词典:
>>> pycon = {2016: "Portland", 2018: "Cleveland"}
>>> europython = {2017: "Rimini", 2018: "Edinburgh", 2019: "Basel"}
>>> pycon | europython
{2016: 'Portland', 2018: 'Edinburgh', 2017: 'Rimini', 2019: 'Basel'}
>>> pycon |= europython
>>> pycon
{2016: 'Portland', 2018: 'Edinburgh', 2017: 'Rimini', 2019: 'Basel'}
使用<unk>的优点之一是它在不同的字典类型上工作,并通过合并保持类型:
>>> from collections import defaultdict
>>> europe = defaultdict(lambda: "", {"Norway": "Oslo", "Spain": "Madrid"})
>>> africa = defaultdict(lambda: "", {"Egypt": "Cairo", "Zimbabwe": "Harare"})
>>> europe | africa
defaultdict(<function <lambda> at 0x7f0cb42a6700>,
{'Norway': 'Oslo', 'Spain': 'Madrid', 'Egypt': 'Cairo', 'Zimbabwe': 'Harare'})
>>> {**europe, **africa}
{'Norway': 'Oslo', 'Spain': 'Madrid', 'Egypt': 'Cairo', 'Zimbabwe': 'Harare'}
您可以使用默认定义,当您想要有效处理丢失的密钥时,请注意, <unk> 保留默认定义,而 {**europe, **africa} 不。
基本用途是更新现有字典,类似于.update():
>>> libraries = {
... "collections": "Container datatypes",
... "math": "Mathematical functions",
... }
>>> libraries |= {"zoneinfo": "IANA time zone support"}
>>> libraries
{'collections': 'Container datatypes', 'math': 'Mathematical functions',
'zoneinfo': 'IANA time zone support'}
当您将字典与字典合并时,两个字典都必须具有适当的字典类型,另一方面,现场运营商(字典=)很高兴与任何字典类似的数据结构合作:
>>> libraries |= [("graphlib", "Functionality for graph-like structures")]
>>> libraries
{'collections': 'Container datatypes', 'math': 'Mathematical functions',
'zoneinfo': 'IANA time zone support',
'graphlib': 'Functionality for graph-like structures'}