我想将两个词典融入一个新的词典。
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)
>>> z
{'a': 1, 'b': 3, 'c': 4}
每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。
我想将两个词典融入一个新的词典。
x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)
>>> z
{'a': 1, 'b': 3, 'c': 4}
每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。
当前回答
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
z = dict(x.items() + y.items())
print z
对于两个字典中的关键物品(“b”),您可以通过将最后一个放在输出中来控制哪个。
其他回答
x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
z = dict(x.items() + y.items())
print z
对于两个字典中的关键物品(“b”),您可以通过将最后一个放在输出中来控制哪个。
此外,当您使用.items() (Python 3.0 之前),您正在创建一个新的列表,包含从字典中的项目. 如果您的字典是大,那么它是相当多的顶部(两个大列表将被扔掉,一旦合并的字典创建)。更新() 可以更有效地工作,因为它可以通过第二个字典项目为项目。
在时间方面:
>>> timeit.Timer("dict(x, **y)", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.52571702003479
>>> timeit.Timer("temp = x.copy()\ntemp.update(y)", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
15.694622993469238
>>> timeit.Timer("dict(x.items() + y.items())", "x = dict(zip(range(1000), range(1000)))\ny=dict(zip(range(1000,2000), range(1000,2000)))").timeit(100000)
41.484580039978027
此外,字典创建的关键词论点仅在Python 2.3中添加,而复制()和更新()将在较旧版本中工作。
在Python3中,项目方法不再返回一个列表,而是一个视图,它像一个集一样作用。
dict(x.items() | y.items())
dict(x.viewitems() | y.viewitems())
编辑:
首先,请注意,在 Python 3 中, dic(x、 **y) 技巧不会工作,除非 y 中的键是线条。
此外,Raymond Hettinger的链路图答案是相当优雅的,因为它可以作为论点采取任意数量的论点,但从论点看起来它顺序地通过每个搜索的所有论点的列表:
In [1]: from collections import ChainMap
In [2]: from string import ascii_uppercase as up, ascii_lowercase as lo; x = dict(zip(lo, up)); y = dict(zip(up, lo))
In [3]: chainmap_dict = ChainMap(y, x)
In [4]: union_dict = dict(x.items() | y.items())
In [5]: timeit for k in union_dict: union_dict[k]
100000 loops, best of 3: 2.15 µs per loop
In [6]: timeit for k in chainmap_dict: chainmap_dict[k]
10000 loops, best of 3: 27.1 µs per loop
我是 Chainmap 的粉丝,但看起来不太实用,在那里可能有很多搜索。
使用 Itertools 保持顺序的简单解决方案(后者有先例)
# py2
from itertools import chain, imap
merge = lambda *args: dict(chain.from_iterable(imap(dict.iteritems, args)))
# py3
from itertools import chain
merge = lambda *args: dict(chain.from_iterable(map(dict.items, args)))
这就是使用:
>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> merge(x, y)
{'a': 1, 'b': 10, 'c': 11}
>>> z = {'c': 3, 'd': 4}
>>> merge(x, y, z)
{'a': 1, 'b': 10, 'c': 3, 'd': 4}
z = MergeDict(x, y)
当使用这个新对象时,它将像合并词典一样行事,但它将有持续的创作时间和持续的记忆脚印,同时让原始词典无触摸。
当然,如果你使用结果很多,那么你会在某个时候达到创建一个真正的合并词典会是最快的解决方案的界限。
a = { 'x': 3, 'y': 4 }
b = MergeDict(a) # we merge just one dict
b['x'] = 5
print b # will print {'x': 5, 'y': 4}
print a # will print {'y': 4, 'x': 3}
class MergeDict(object):
def __init__(self, *originals):
self.originals = ({},) + originals[::-1] # reversed
def __getitem__(self, key):
for original in self.originals:
try:
return original[key]
except KeyError:
pass
raise KeyError(key)
def __setitem__(self, key, value):
self.originals[0][key] = value
def __iter__(self):
return iter(self.keys())
def __repr__(self):
return '%s(%s)' % (
self.__class__.__name__,
', '.join(repr(original)
for original in reversed(self.originals)))
def __str__(self):
return '{%s}' % ', '.join(
'%r: %r' % i for i in self.iteritems())
def iteritems(self):
found = set()
for original in self.originals:
for k, v in original.iteritems():
if k not in found:
yield k, v
found.add(k)
def items(self):
return list(self.iteritems())
def keys(self):
return list(k for k, _ in self.iteritems())
def values(self):
return list(v for _, v in self.iteritems())