我想将两个词典融入一个新的词典。

x = {'a': 1, 'b': 2}
y = {'b': 3, 'c': 4}
z = merge(x, y)

>>> z
{'a': 1, 'b': 3, 'c': 4}

每当两个字典中都有一个关键 k 时,只应保留 y(k) 的值。


当前回答

x = {'a':1, 'b': 2}
y = {'b':10, 'c': 11}
z = dict(x.items() + y.items())
print z

对于两个字典中的关键物品(“b”),您可以通过将最后一个放在输出中来控制哪个。

其他回答

这个问题被标签为Python-3x,但考虑到这是一个相对较新的补充,并且最受欢迎的,接受的答案与Python 2.x解决方案广泛处理,我敢添加一个线条,引用一个令人兴奋的功能的Python 2.x列表理解,即名字泄漏。

$ python2
Python 2.7.13 (default, Jan 19 2017, 14:48:08) 
[GCC 6.3.0 20170118] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> [z.update(d) for z in [{}] for d in (x, y)]
[None, None]
>>> z
{'a': 1, 'c': 11, 'b': 10}
>>> ...

我很高兴说上面的内容不再在任何Python 3版本上工作。

z1 = dict(x.items() + y.items())
z2 = dict(x, **y)

在我的机器上,至少(一个相当常见的x86_64运行Python 2.5.2),替代Z2不仅更短,更简单,而且更快。

% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z1=dict(x.items() + y.items())'
100000 loops, best of 3: 5.67 usec per loop
% python -m timeit -s 'x=y=dict((i,i) for i in range(20))' 'z2=dict(x, **y)' 
100000 loops, best of 3: 1.53 usec per loop

示例2:不超越的字典,将252条短线地图到整条,反之亦然:

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z1=dict(x.items() + y.items())'
1000 loops, best of 3: 260 usec per loop
% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z2=dict(x, **y)'               
10000 loops, best of 3: 26.9 usec per loop

z2赢得了大约10的因素,这在我的书中是一个相当大的胜利!

在比较这两个之后,我想知道 z1 的不良性能是否可以归功于构建两个项目列表的顶端,这反过来导致我想知道这个变量是否会更好地工作:

from itertools import chain
z3 = dict(chain(x.iteritems(), y.iteritems()))

% python -m timeit -s 'from itertools import chain; from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z3=dict(chain(x.iteritems(), y.iteritems()))'
10000 loops, best of 3: 66 usec per loop

z0 = dict(x)
z0.update(y)

% python -m timeit -s 'from htmlentitydefs import codepoint2name as x, name2codepoint as y' 'z0=dict(x); z0.update(y)'
10000 loops, best of 3: 26.9 usec per loop

你也可以这样写作

z0 = x.copy()
z0.update(y)

正如托尼所做的那样,但(不令人惊讶)评分的差异显然没有对性能的测量效应。 使用任何人看起来对你是正确的。

可以用一个单一的理解来做到这一点:

>>> x = {'a':1, 'b': 2}
>>> y = {'b':10, 'c': 11}
>>> { key: y[key] if key in y else x[key]
      for key in set(x) + set(y)
    }

在我看来,最好的答案是“单一表达”部分,因为没有额外的功能是必要的,而且它是短暂的。

2 词典

def union2(dict1, dict2):
    return dict(list(dict1.items()) + list(dict2.items()))

n 字典

def union(*dicts):
    return dict(itertools.chain.from_iterable(dct.items() for dct in dicts))

查看 https://mathieularose.com/how-not-to-flatten-a-list-of-lists-in-python/

我将所提出的与 perfplot 比较,并发现

x | y   # Python 3.9+

是最快的解决方案,与旧的好解决方案

{**x, **y}

temp = x.copy()
temp.update(y)

此分類上一篇


重复字符的代码:

from collections import ChainMap
from itertools import chain
import perfplot


def setup(n):
    x = dict(zip(range(n), range(n)))
    y = dict(zip(range(n, 2 * n), range(n, 2 * n)))
    return x, y


def copy_update(x, y):
    temp = x.copy()
    temp.update(y)
    return temp


def add_items(x, y):
    return dict(list(x.items()) + list(y.items()))


def curly_star(x, y):
    return {**x, **y}


def chain_map(x, y):
    return dict(ChainMap({}, y, x))


def itertools_chain(x, y):
    return dict(chain(x.items(), y.items()))


def python39_concat(x, y):
    return x | y


b = perfplot.bench(
    setup=setup,
    kernels=[
        copy_update,
        add_items,
        curly_star,
        chain_map,
        itertools_chain,
        python39_concat,
    ],
    labels=[
        "copy_update",
        "dict(list(x.items()) + list(y.items()))",
        "{**x, **y}",
        "chain_map",
        "itertools.chain",
        "x | y",
    ],
    n_range=[2 ** k for k in range(18)],
    xlabel="len(x), len(y)",
    equality_check=None,
)
b.save("out.png")
b.show()