我如何在0和1之间迭代0.1步?
这表示step参数不能为零:
for i in range(0, 1, 0.1):
print(i)
我如何在0和1之间迭代0.1步?
这表示step参数不能为零:
for i in range(0, 1, 0.1):
print(i)
当前回答
下面是一个使用itertools的解决方案:
import itertools
def seq(start, end, step):
if step == 0:
raise ValueError("step must not be 0")
sample_count = int(abs(end - start) / step)
return itertools.islice(itertools.count(start, step), sample_count)
使用的例子:
for i in seq(0, 1, 0.1):
print(i)
其他回答
下面是我的解决方案,它可以很好地使用float_range(- 1,0,0.01),并且没有浮点表示错误。它不是很快,但工作得很好:
from decimal import Decimal
def get_multiplier(_from, _to, step):
digits = []
for number in [_from, _to, step]:
pre = Decimal(str(number)) % 1
digit = len(str(pre)) - 2
digits.append(digit)
max_digits = max(digits)
return float(10 ** (max_digits))
def float_range(_from, _to, step, include=False):
"""Generates a range list of floating point values over the Range [start, stop]
with step size step
include=True - allows to include right value to if possible
!! Works fine with floating point representation !!
"""
mult = get_multiplier(_from, _to, step)
# print mult
int_from = int(round(_from * mult))
int_to = int(round(_to * mult))
int_step = int(round(step * mult))
# print int_from,int_to,int_step
if include:
result = range(int_from, int_to + int_step, int_step)
result = [r for r in result if r <= int_to]
else:
result = range(int_from, int_to, int_step)
# print result
float_result = [r / mult for r in result]
return float_result
print float_range(-1, 0, 0.01,include=False)
assert float_range(1.01, 2.06, 5.05 % 1, True) ==\
[1.01, 1.06, 1.11, 1.16, 1.21, 1.26, 1.31, 1.36, 1.41, 1.46, 1.51, 1.56, 1.61, 1.66, 1.71, 1.76, 1.81, 1.86, 1.91, 1.96, 2.01, 2.06]
assert float_range(1.01, 2.06, 5.05 % 1, False)==\
[1.01, 1.06, 1.11, 1.16, 1.21, 1.26, 1.31, 1.36, 1.41, 1.46, 1.51, 1.56, 1.61, 1.66, 1.71, 1.76, 1.81, 1.86, 1.91, 1.96, 2.01]
与其直接使用小数点,不如用你想要多少点来表示,这要安全得多。否则,浮点舍入错误很可能会给您一个错误的结果。
使用NumPy库中的linspace函数(它不是标准库的一部分,但相对容易获得)。Linspace需要返回一些点,还允许你指定是否包含正确的端点:
>>> np.linspace(0,1,11)
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
>>> np.linspace(0,1,10,endpoint=False)
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
如果你真的想使用浮点步长值,可以使用numpy.arange:
>>> import numpy as np
>>> np.arange(0.0, 1.0, 0.1)
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
但是浮点舍入错误会导致问题。下面是一个简单的例子,舍入错误导致range生成一个长度为4的数组,而它应该只生成3个数字:
>>> numpy.arange(1, 1.3, 0.1)
array([1. , 1.1, 1.2, 1.3])
最佳解决方案:没有舍入误差
>>> step = .1
>>> N = 10 # number of data points
>>> [ x / pow(step, -1) for x in range(0, N + 1) ]
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
或者,对于一组范围而不是一组数据点(例如,连续函数),使用:
>>> step = .1
>>> rnge = 1 # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step
>>> [ x / pow(step,-1) for x in range(0, N + 1) ]
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
实现一个函数:将x / pow(step, -1)替换为f(x / pow(step, -1)),并定义f。 例如:
>>> import math
>>> def f(x):
return math.sin(x)
>>> step = .1
>>> rnge = 1 # NOTE range = 1, i.e. span of data points
>>> N = int(rnge / step)
>>> [ f( x / pow(step,-1) ) for x in range(0, N + 1) ]
[0.0, 0.09983341664682815, 0.19866933079506122, 0.29552020666133955, 0.3894183423086505,
0.479425538604203, 0.5646424733950354, 0.644217687237691, 0.7173560908995228,
0.7833269096274834, 0.8414709848078965]
scipy有一个内置的函数arange,它泛化了Python的range()构造函数,以满足您对浮点数处理的需求。
从scipy进口安排
增加循环的i的大小,然后在需要时减少它。
for i * 100 in range(0, 100, 10):
print i / 100.0
编辑:老实说,我不记得为什么我认为这会在语法上工作
for i in range(0, 11, 1):
print i / 10.0
这应该有期望的输出。