我如何在0和1之间迭代0.1步?
这表示step参数不能为零:
for i in range(0, 1, 0.1):
print(i)
我如何在0和1之间迭代0.1步?
这表示step参数不能为零:
for i in range(0, 1, 0.1):
print(i)
当前回答
可以使用Numpy库来完成。Arange()函数允许浮动中的步骤。但是,它返回一个numpy数组,为了方便起见,可以使用tolist()将其转换为列表。
for i in np.arange(0, 1, 0.1).tolist():
print i
其他回答
如果你经常这样做,你可能想保存生成的列表r
r=map(lambda x: x/10.0,range(0,10))
for i in r:
print i
法兰(开始、停止、精度)
def frange(a,b,i):
p = 10**i
sr = a*p
er = (b*p) + 1
p = float(p)
return map(lambda x: x/p, xrange(sr,er))
In >frange(-1,1,1)
Out>[-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
我只是一个初学者,但我有同样的问题,当模拟一些计算。这是我如何试图解决这个问题,这似乎是工作与十进制步骤。
我也很懒,所以我发现很难写我自己的范围函数。
基本上,我所做的就是将xrange(0.0, 1.0, 0.01)更改为xrange(0, 100, 1),并在循环中使用除100.0。 我也担心,是否会有舍入错误。所以我决定测试一下,是否有。现在我听说,如果一个计算中的0.01不完全是浮点数0.01比较它们应该返回False(如果我错了,请告诉我)。
所以我决定通过运行一个简短的测试来测试我的解决方案是否适用于我的范围:
for d100 in xrange(0, 100, 1):
d = d100 / 100.0
fl = float("0.00"[:4 - len(str(d100))] + str(d100))
print d, "=", fl , d == fl
每一个都输出True。
现在,如果我完全错了,请告诉我。
你可以使用这个函数:
def frange(start,end,step):
return map(lambda x: x*step, range(int(start*1./step),int(end*1./step)))
这是我的解决方案,以获得浮动步长范围。 使用这个函数,不需要导入numpy,也不需要安装它。 我很确定它可以被改进和优化。请随意发表在这里。
from __future__ import division
from math import log
def xfrange(start, stop, step):
old_start = start #backup this value
digits = int(round(log(10000, 10)))+1 #get number of digits
magnitude = 10**digits
stop = int(magnitude * stop) #convert from
step = int(magnitude * step) #0.1 to 10 (e.g.)
if start == 0:
start = 10**(digits-1)
else:
start = 10**(digits)*start
data = [] #create array
#calc number of iterations
end_loop = int((stop-start)//step)
if old_start == 0:
end_loop += 1
acc = start
for i in xrange(0, end_loop):
data.append(acc/magnitude)
acc += step
return data
print xfrange(1, 2.1, 0.1)
print xfrange(0, 1.1, 0.1)
print xfrange(-1, 0.1, 0.1)
输出结果为:
[1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1]
[-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0]