我如何在0和1之间迭代0.1步?
这表示step参数不能为零:
for i in range(0, 1, 0.1):
print(i)
我如何在0和1之间迭代0.1步?
这表示step参数不能为零:
for i in range(0, 1, 0.1):
print(i)
当前回答
你可以使用这个函数:
def frange(start,end,step):
return map(lambda x: x*step, range(int(start*1./step),int(end*1./step)))
其他回答
增加循环的i的大小,然后在需要时减少它。
for i * 100 in range(0, 100, 10):
print i / 100.0
编辑:老实说,我不记得为什么我认为这会在语法上工作
for i in range(0, 11, 1):
print i / 10.0
这应该有期望的输出。
我的答案与使用map()的其他人类似,不需要NumPy,也不使用lambda(尽管您可以)。以dt为单位获取从0.0到t_max的浮点值列表:
def xdt(n):
return dt*float(n)
tlist = map(xdt, range(int(t_max/dt)+1))
这一行代码不会使代码变得混乱。step参数的符号很重要。
def frange(start, stop, step):
return [x*step+start for x in range(0,round(abs((stop-start)/step)+0.5001),
int((stop-start)/step<0)*-2+1)]
这里的许多解决方案在Python 3.6中仍然存在浮点错误,并没有完全满足我个人的需求。
下面的函数接受整数或浮点数,不需要导入,也不返回浮点错误。
def frange(x, y, step):
if int(x + y + step) == (x + y + step):
r = list(range(int(x), int(y), int(step)))
else:
f = 10 ** (len(str(step)) - str(step).find('.') - 1)
rf = list(range(int(x * f), int(y * f), int(step * f)))
r = [i / f for i in rf]
return r
这是我的解决方案,以获得浮动步长范围。 使用这个函数,不需要导入numpy,也不需要安装它。 我很确定它可以被改进和优化。请随意发表在这里。
from __future__ import division
from math import log
def xfrange(start, stop, step):
old_start = start #backup this value
digits = int(round(log(10000, 10)))+1 #get number of digits
magnitude = 10**digits
stop = int(magnitude * stop) #convert from
step = int(magnitude * step) #0.1 to 10 (e.g.)
if start == 0:
start = 10**(digits-1)
else:
start = 10**(digits)*start
data = [] #create array
#calc number of iterations
end_loop = int((stop-start)//step)
if old_start == 0:
end_loop += 1
acc = start
for i in xrange(0, end_loop):
data.append(acc/magnitude)
acc += step
return data
print xfrange(1, 2.1, 0.1)
print xfrange(0, 1.1, 0.1)
print xfrange(-1, 0.1, 0.1)
输出结果为:
[1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0]
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1]
[-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1, 0.0]