我设置了dict2 = dict1。当我编辑dict2时,原来的dict1也改变了。为什么?

>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = dict1
>>> dict2["key2"] = "WHY?!"
>>> dict1
{'key2': 'WHY?!', 'key1': 'value1'}

当前回答

除了其他提供的解决方案,您还可以使用**将字典集成到一个空字典中,例如:

Shallow_copy_of_other_dict = {**other_dict}。

现在您将拥有other_dict的“浅”副本。

应用于你的例子:

>>> dict1 = {"key1": "value1", "key2": "value2"}
>>> dict2 = {**dict1}
>>> dict2
{'key1': 'value1', 'key2': 'value2'}
>>> dict2["key2"] = "WHY?!"
>>> dict1
{'key1': 'value1', 'key2': 'value2'}
>>>

指针:浅拷贝和深拷贝的区别

其他回答

起初,这也让我感到困惑,因为我来自C语言背景。

在C语言中,变量是内存中具有已定义类型的位置。对变量赋值会将数据复制到变量的内存位置。

但在Python中,变量更像是指向对象的指针。因此,将一个变量赋值给另一个变量并不会产生复制,它只是使变量名指向相同的对象。

正如其他人解释的那样,内置字典不能做你想做的事情。但是在Python2(可能还有python3)中,你可以很容易地创建一个ValueDict类,使用=进行复制,这样你就可以确保原始的类不会改变。

class ValueDict(dict):

    def __ilshift__(self, args):
        result = ValueDict(self)
        if isinstance(args, dict):
            dict.update(result, args)
        else:
            dict.__setitem__(result, *args)
        return result # Pythonic LVALUE modification

    def __irshift__(self, args):
        result = ValueDict(self)
        dict.__delitem__(result, args)
        return result # Pythonic LVALUE modification

    def __setitem__(self, k, v):
        raise AttributeError, \
            "Use \"value_dict<<='%s', ...\" instead of \"d[%s] = ...\"" % (k,k)

    def __delitem__(self, k):
        raise AttributeError, \
            "Use \"value_dict>>='%s'\" instead of \"del d[%s]" % (k,k)

    def update(self, d2):
        raise AttributeError, \
            "Use \"value_dict<<=dict2\" instead of \"value_dict.update(dict2)\""


# test
d = ValueDict()

d <<='apples', 5
d <<='pears', 8
print "d =", d

e = d
e <<='bananas', 1
print "e =", e
print "d =", d

d >>='pears'
print "d =", d
d <<={'blueberries': 2, 'watermelons': 315}
print "d =", d
print "e =", e
print "e['bananas'] =", e['bananas']


# result
d = {'apples': 5, 'pears': 8}
e = {'apples': 5, 'pears': 8, 'bananas': 1}
d = {'apples': 5, 'pears': 8}
d = {'apples': 5}
d = {'watermelons': 315, 'blueberries': 2, 'apples': 5}
e = {'apples': 5, 'pears': 8, 'bananas': 1}
e['bananas'] = 1

# e[0]=3
# would give:
# AttributeError: Use "value_dict<<='0', ..." instead of "d[0] = ..."

请参考这里讨论的左值修改模式:Python 2.7 -用于左值修改的干净语法。关键的观察是,str和int在Python中表现为值(即使它们实际上是不可变的对象)。在观察的同时,请注意str或int并没有什么神奇的特殊之处。dict可以以几乎相同的方式使用,我可以想到ValueDict有意义的许多情况。

在Python 2.7和3中创建字典副本的最佳和最简单的方法是…

创建一个简单(单层)字典的副本:

1. 使用dict()方法,而不是生成指向现有dict的引用。

my_dict1 = dict()
my_dict1["message"] = "Hello Python"
print(my_dict1)  # {'message':'Hello Python'}

my_dict2 = dict(my_dict1)
print(my_dict2)  # {'message':'Hello Python'}

# Made changes in my_dict1 
my_dict1["name"] = "Emrit"
print(my_dict1)  # {'message':'Hello Python', 'name' : 'Emrit'}
print(my_dict2)  # {'message':'Hello Python'}

2. 使用python字典内置的update()方法。

my_dict2 = dict()
my_dict2.update(my_dict1)
print(my_dict2)  # {'message':'Hello Python'}

# Made changes in my_dict1 
my_dict1["name"] = "Emrit"
print(my_dict1)  # {'message':'Hello Python', 'name' : 'Emrit'}
print(my_dict2)  # {'message':'Hello Python'}

创建一个嵌套的或复杂的字典的副本:

使用内置的复制模块,它提供了通用的浅拷贝和深拷贝操作。此模块在Python 2.7和3中都有

import copy

my_dict2 = copy.deepcopy(my_dict1)

下面的代码是在dicts上的,它遵循json语法,比deepcopy快3倍以上

def CopyDict(dSrc):
    try:
        return json.loads(json.dumps(dSrc))
    except Exception as e:
        Logger.warning("Can't copy dict the preferred way:"+str(dSrc))
        return deepcopy(dSrc)

我遇到了一个奇怪的行为时,试图深度复制类的字典属性w/o赋值给变量

New = copy.deepcopy(my_class.a)不工作,即修改New修改my_class.a

但如果你用old = my_class。A然后new = copy.deepcopy(旧)它工作得很好,即修改new不会影响my_class.a

我不知道为什么会发生这种情况,但希望它有助于节省一些时间!:)