Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

切片运算符中的step参数。例如:

a = [1,2,3,4,5]
>>> a[::2]  # iterate over the whole list in 2-increments
[1,3,5]

特殊情况x[::-1]是“x反转”的有用习语。

>>> a[::-1]
[5,4,3,2,1]

其他回答

分配和删除切片:

>>> a = range(10)
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> a[:5] = [42]
>>> a
[42, 5, 6, 7, 8, 9]
>>> a[:1] = range(5)
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> del a[::2]
>>> a
[1, 3, 5, 7, 9]
>>> a[::2] = a[::-2]
>>> a
[9, 3, 5, 7, 1]

注意:当赋值给扩展片(s[start:stop:step])时,赋值的可迭代对象必须与片的长度相同。

修饰符

装饰器允许将一个函数或方法包装在另一个函数中,该函数可以添加功能、修改参数或结果等。在函数定义的上方一行编写装饰符,以“at”符号(@)开始。

示例显示了一个print_args装饰器,它在调用被装饰函数之前打印函数的参数:

>>> def print_args(function):
>>>     def wrapper(*args, **kwargs):
>>>         print 'Arguments:', args, kwargs
>>>         return function(*args, **kwargs)
>>>     return wrapper

>>> @print_args
>>> def write(text):
>>>     print text

>>> write('foo')
Arguments: ('foo',) {}
foo

一些内置的收藏夹,map(), reduce()和filter()。所有这些都非常快速和强大。

如果在函数中使用exec,变量查找规则将发生巨大变化。闭包不再可能,但Python允许在函数中使用任意标识符。这为您提供了一个“可修改的locals()”,并可用于星型导入标识符。缺点是,它会使每次查找都变慢,因为变量最终会在字典中而不是在帧中的槽中结束:

>>> def f():
...  exec "a = 42"
...  return a
... 
>>> def g():
...  a = 42
...  return a
... 
>>> import dis
>>> dis.dis(f)
  2           0 LOAD_CONST               1 ('a = 42')
              3 LOAD_CONST               0 (None)
              6 DUP_TOP             
              7 EXEC_STMT           

  3           8 LOAD_NAME                0 (a)
             11 RETURN_VALUE        
>>> dis.dis(g)
  2           0 LOAD_CONST               1 (42)
              3 STORE_FAST               0 (a)

  3           6 LOAD_FAST                0 (a)
              9 RETURN_VALUE        

创建生成器对象

如果你写

x=(n for n in foo if bar(n))

你可以取出生成器,把它赋值给x,这意味着你可以这样做

for n in x:

这样做的优点是不需要中间存储,如果需要中间存储,则需要中间存储

x = [n for n in foo if bar(n)]

在某些情况下,这可以显著提高速度。

你可以在生成器的末尾附加许多if语句,基本上复制嵌套的for循环:

>>> n = ((a,b) for a in range(0,2) for b in range(4,6))
>>> for i in n:
...   print i 

(0, 4)
(0, 5)
(1, 4)
(1, 5)