Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

在Python中解压缩不需要的文件

有人在博客上说Python没有zip()的解压缩函数。Unzip的计算很简单,因为:

>>> t1 = (0,1,2,3)
>>> t2 = (7,6,5,4)
>>> [t1,t2] == zip(*zip(t1,t2))
True

但经过反思,我宁愿使用显式的unzip()。

其他回答

获取python正则表达式解析树来调试正则表达式。

正则表达式是python的一个伟大特性,但调试它们可能是一件痛苦的事情,而且正则表达式很容易出错。

幸运的是,python可以通过将未记录的、实验性的隐藏标志re.DEBUG(实际上是128)传递给re.compile来打印正则表达式解析树。

>>> re.compile("^\[font(?:=(?P<size>[-+][0-9]{1,2}))?\](.*?)[/font]",
    re.DEBUG)
at at_beginning
literal 91
literal 102
literal 111
literal 110
literal 116
max_repeat 0 1
  subpattern None
    literal 61
    subpattern 1
      in
        literal 45
        literal 43
      max_repeat 1 2
        in
          range (48, 57)
literal 93
subpattern 2
  min_repeat 0 65535
    any None
in
  literal 47
  literal 102
  literal 111
  literal 110
  literal 116

一旦理解了语法,就可以发现错误。在这里我们可以看到,我忘记转义[/font]中的[]。

当然,你可以将它与任何你想要的标志组合在一起,比如注释正则表达式:

>>> re.compile("""
 ^              # start of a line
 \[font         # the font tag
 (?:=(?P<size>  # optional [font=+size]
 [-+][0-9]{1,2} # size specification
 ))?
 \]             # end of tag
 (.*?)          # text between the tags
 \[/font\]      # end of the tag
 """, re.DEBUG|re.VERBOSE|re.DOTALL)

插入与追加

不是特稿,但可能会很有趣

假设您想要在列表中插入一些数据,然后反转它。最简单的方法是

count = 10 ** 5
nums = []
for x in range(count):
    nums.append(x)
nums.reverse()

然后你会想:把数字从最开始插入怎么样?所以:

count = 10 ** 5 
nums = [] 
for x in range(count):
    nums.insert(0, x)

但它却慢了100倍!如果我们设置count = 10 ** 6,它将慢1000倍;这是因为插入是O(n²),而追加是O(n)。

造成这种差异的原因是insert每次调用时都必须移动列表中的每个元素;Append只是在列表的末尾添加元素(有时它必须重新分配所有元素,但它仍然更快)

上下文管理器和“with”语句

在PEP 343中引入的上下文管理器是作为一组语句的运行时上下文的对象。

由于该特性使用了新的关键字,它是逐渐引入的:在Python 2.5中通过__future__指令可用。Python 2.6及以上版本(包括Python 3)默认情况下可用。

我经常使用“with”语句,因为我认为这是一个非常有用的结构,下面是一个快速演示:

from __future__ import with_statement

with open('foo.txt', 'w') as f:
    f.write('hello!')

这里在幕后发生的事情是,“with”语句在文件对象上调用特殊的__enter__和__exit__方法。如果with语句体引发任何异常,异常细节也会传递给__exit__,允许在那里进行异常处理。

在这种特殊情况下,这为您做的是,当执行超出with套件的范围时,它保证关闭文件,无论这是正常发生还是抛出异常。它基本上是一种抽象出常见异常处理代码的方法。

其他常见的用例包括线程锁定和数据库事务。

在调试复杂的数据结构时,pprint模块非常方便。

从文件中引用…

>>> import pprint    
>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff)
>>> pprint.pprint(stuff)
[<Recursion on list with id=869440>,
 '',
 '/usr/local/lib/python1.5',
 '/usr/local/lib/python1.5/test',
 '/usr/local/lib/python1.5/sunos5',
 '/usr/local/lib/python1.5/sharedmodules',
 '/usr/local/lib/python1.5/tkinter']

pdb - Python调试器

作为程序员,要进行严肃的程序开发,首先需要的东西之一是调试器。Python有一个内置的模块,叫做pdb(自然是“Python调试器”的缩写!)

http://docs.python.org/library/pdb.html