Python编程语言中有哪些鲜为人知但很有用的特性?

尽量将答案限制在Python核心。 每个回答一个特征。 给出一个例子和功能的简短描述,而不仅仅是文档链接。 使用标题作为第一行标记该特性。

快速链接到答案:

参数解包 牙套 链接比较运算符 修饰符 可变默认参数的陷阱/危险 描述符 字典默认的.get值 所以测试 省略切片语法 枚举 其他/ 函数作为iter()参数 生成器表达式 导入该 就地值交换 步进列表 __missing__物品 多行正则表达式 命名字符串格式化 嵌套的列表/生成器推导 运行时的新类型 .pth文件 ROT13编码 正则表达式调试 发送到发电机 交互式解释器中的制表符补全 三元表达式 试着/ / else除外 拆包+打印()函数 与声明


当前回答

动态添加的属性

如果您想通过调用来向类添加一些属性,这可能会很有用。这可以通过重写__getattribute__成员函数来实现,该成员函数在使用点操作数时被调用。让我们看一个虚拟类为例:

class Dummy(object):
    def __getattribute__(self, name):
        f = lambda: 'Hello with %s'%name
        return f

当你实例化一个Dummy对象并进行方法调用时,你会得到以下结果:

>>> d = Dummy()
>>> d.b()
'Hello with b'

最后,您甚至可以为您的类设置属性,以便动态定义它。如果你使用Python web框架,想通过解析属性名来进行查询,这可能很有用。

我在github上有一个要点,这个简单的代码和一个朋友在Ruby上做的等效代码。

保重!

其他回答

列举

用enumerate包装一个可迭代对象,它将生成项目及其索引。

例如:


>>> a = ['a', 'b', 'c', 'd', 'e']
>>> for index, item in enumerate(a): print index, item
...
0 a
1 b
2 c
3 d
4 e
>>>

引用:

Python教程循环技术 Python文档-内置函数-枚举 PEP 279

条件赋值

x = 3 if (y == 1) else 2

正如它听起来的那样:“如果y是1,则赋3给x,否则赋2给x”。注意,括号不是必需的,但是为了可读性,我喜欢它们。如果你有更复杂的东西,你也可以把它串起来:

x = 3 if (y == 1) else 2 if (y == -1) else 1

虽然在某种程度上,这有点太过分了。

注意,你可以使用if…任何表达式中的Else。例如:

(func1 if y == 1 else func2)(arg1, arg2) 

这里,如果y = 1调用func1,否则调用func2。在这两种情况下,对应的函数将调用参数arg1和arg2。

类似地,以下也成立:

x = (class1 if y == 1 else class2)(arg1, arg2)

其中class1和class2是两个类。

__getattr__ ()

getattr是一种创建泛型类的好方法,在编写API时尤其有用。例如,在FogBugz Python API中,getattr用于无缝地将方法调用传递给web服务:

class FogBugz:
    ...

    def __getattr__(self, name):
        # Let's leave the private stuff to Python
        if name.startswith("__"):
            raise AttributeError("No such attribute '%s'" % name)

        if not self.__handlerCache.has_key(name):
            def handler(**kwargs):
                return self.__makerequest(name, **kwargs)
            self.__handlerCache[name] = handler
        return self.__handlerCache[name]
    ...

当有人调用FogBugz.search(q='bug')时,他们实际上不会调用搜索方法。相反,getattr通过创建一个新函数来处理调用,该函数包装了makerequest方法,该方法将适当的HTTP请求发送给web API。任何错误都将由web服务分派并传递回用户。

你可以按需构造kwargs函数:

kwargs = {}
kwargs[str("%s__icontains" % field)] = some_value
some_function(**kwargs)

str()调用在某种程度上是需要的,因为python会抱怨它不是字符串。不知道为什么;) 我在django对象模型中使用这个动态过滤器:

result = model_class.objects.filter(**kwargs)

threading.enumerate()提供了对系统中所有Thread对象的访问,sys._current_frames()返回系统中所有线程的当前堆栈帧,因此将这两者结合起来,你会得到Java风格的堆栈转储:

def dumpstacks(signal, frame):
    id2name = dict([(th.ident, th.name) for th in threading.enumerate()])
    code = []
    for threadId, stack in sys._current_frames().items():
        code.append("\n# Thread: %s(%d)" % (id2name[threadId], threadId))
        for filename, lineno, name, line in traceback.extract_stack(stack):
            code.append('File: "%s", line %d, in %s' % (filename, lineno, name))
            if line:
                code.append("  %s" % (line.strip()))
    print "\n".join(code)

import signal
signal.signal(signal.SIGQUIT, dumpstacks)

在多线程python程序开始时执行此操作,您可以通过发送SIGQUIT随时访问线程的当前状态。你也可以选择信号。SIGUSR1或signal。sigusr2。

See